CLASS NUMBERS AND μ-INVARIANTS OF CYCLOTOMIC FIELDS

T. METSÄNKYLÄ

ABSTRACT. We give a new upper bound for the μ -invariant of a cyclotomic field by estimating the first factor of the class number of the pth cyclotomic field (p an odd prime).

For each $n \ge 0$ let h_n denote the class number of the cyclotomic field of p^{n+1} th roots of unity, where p is an odd prime. According to Iwasawa [1], the greatest exponent e(n) for which $p^{e(n)}|h_n$ is given by a formula

$$e(n) = \lambda n + \mu p^n + \nu$$

valid for all sufficiently large n. Here λ , μ , and ν are integers $(\lambda, \mu \ge 0)$ independent of n. In [2] Iwasawa proved the following estimates for μ :

- (i) $\mu < p-1$ for all p,
- (ii) if $c > \frac{1}{2}$, then there exists a bound N(c) such that $\mu < c(p-1)$ whenever p > N(c).

We shall show that $\mu < (p-1)/2$ for all p.

Let us denote by h^- the so-called first factor of h_0 . As shown in [2], the problem of estimating μ can be reduced to that of estimating h^- by means of the relation $p^{\mu/2} \le h^-$.

It is known that

$$h^{-} = (2p)^{-(p-3)/2} \left| \prod_{\chi \in S} \sum_{n=1}^{p-1} \chi(n) n \right|,$$

where S denotes the set of all odd residue class characters mod p. Noting that

$$\sum_{\chi \in S} \chi(m)\chi'(n) = (p-1)/2 \quad \text{if } m \equiv n \pmod{p}, (mn, p) = 1,$$

$$= -(p-1)/2 \quad \text{if } m \equiv -n \pmod{p}, (mn, p) = 1,$$

$$= 0 \quad \text{otherwise,}$$

Received by the editors August 17, 1973.

AMS (MOS) subject classifications (1970). Primary 12A35, 12A50.

Key words and phrases. Class number, cyclotomic field.

 (χ') means the complex conjugate of χ), we first get

$$\sum_{\chi \in S} \left| \sum_{n=1}^{p-1} \chi(n) n \right|^2 = ((p-1)/2) \left(\sum_{n=1}^{p-1} n^2 - \sum_{n=1}^{p-1} n(p-n) \right) = (p-2)(p-1)^2 p/12.$$

Therefore, by the arithmetic-geometric mean inequality,

$$\prod_{\gamma \in S} \left| \sum_{n=1}^{p-1} \chi(n) n \right|^{4/(p-1)} \leq (p-2)(p-1)p/6 < p^3/6.$$

This gives us the estimate

$$(1) h^- < 2p(p/24)^{(p-1)/4}$$

Thus, if p>3, we see that $h^- < p^{(p-1)/4}$ and so $\mu < (p-1)/2$. This holds also for p=3, since then $h^-=1$. (As a matter of fact, we know that $\mu=0$ for all regular primes.)

It should be mentioned that the result (1) has been obtained earlier by Lepistö [3] and the author [4] by more complicated methods than that presented above.

REFERENCES

- 1. K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226. MR 23 #A1630.
 - 2. ——, On the μ -invariants of cyclotomic fields, Acta Arith. 21 (1972), 99–101.
- 3. T. Lepistö, On the class number of the cyclotomic field $k(\exp(2\pi i/p^h))$, Ann. Univ. Turku. Ser. A I 125 (1969), 13 pp.
- 4. T. Metsänkylä, On the growth of the first factor of the cyclotomic class number, Ann. Univ. Turku. Ser. A I 155 (1972), 12 pp.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TURKU, SF-20500 TURKU, FINLAND