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SOME CRITERIA FOR THE NONEXISTENCE
OF CERTAIN FINITE LINEAR GROUPS

HARVEY 1. BLAU

ABSTRACT. Let p be a prime and G a finite group, not of type
Ly(p), with a cyclic Sylow p-subgroup P. Assume that G=G". The
purpose of this note is to put some rather stringent lower bounds on
the degree d of a faithful indecomposable representation of G over
a field of characteristic p given certain conditions on the normalizer
N and the centralizer C of P in G. In particular, if the center of G has
order 2 and |[N:C|=p—1, thendZp—1.

This paper began when the author realized that some of the methods
in [1] were more powerful than he originally believed. Consequently,
elements of the argument below appeared in slightly less general form
(and with weaker application) in [1, §5]. Although the blanket hypotheses
of that section do not exactly coincide with those of our assertions (we
do not assume here that p=13 or that G is not of type L.(p) in Lemma 1
below), it should be clear that the results we quote from [1, §5] are
indeed valid in the context where they are applied.

Throughout the paper G denotes a finite group, p an odd prime, P
a Sylow p-subgroup of G. N and C are, respectively, the normalizer
and centralizer of P in G, e=|N:C|, t=(p—1)/e, and z is the order of
Z, the center of G. K is a field of characteristic p which is a splitting field
for all subgroups of G. If M is a KG-module, M* denotes its dual. The
linear character o:N/P—K is as defined in [1]. v, is the usual 2-adic
valuation on the rationals.

Hypothesis A.|P|=p and N/P is abelian.

Hypothesis B. P is cyclic, G is not of type L,(p), and there is a faithful
indecomposable KG-module L of dimension d=p—s=p.

Hypothesis B implies Hypothesis A by [2]. If group G and module L
satisfy Hypothesis B, then so do J and L;,, where J is the intersection
of the derived series of G. So the assumption G=G’ is not a severe
restriction.
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Our first result generalizes [1, Lemma 5.15], and has almost the same
proof.

LEMMA 1. Assume Hypothesis A and that G=G'. Suppose there exist
indecomposable KG-modules L and M of dimension d with p[2<d<p such
that M= L* but the nonprojective summands of LM are self-dual. Then

dzp—1 (t odd),
=Zp—t+1 (teven).

ProOF. Let Ly=V (1), My=V4(y) asin [1, §4]. Let s=p—d. M3 L*
implies Ayo*#1 [1, Lemma 2.3]. As in [1, §5], the nonprojective summands
of LM are L, 0<i<s—1, where dim L,=2i4+1+m;p and

L, = Vaia(Aye’™?) + Z Vy(Aya'*?).
i€
As remarked in [1, §5], the L, are self-dual if and only if (Aya®)2=1.
Suppose m; is odd. Then, as in the proof of [1, Lemma 5.5], there is an
odd number of j=0 (mod ) in &, if ¢ is even, and an odd number of
j=e[2 (mod e) in &, if ¢ is odd. Suppose m; is even. Then 2i+14+m,p
is odd, so [1, (5.6)] and (Aya®)®=1 imply

1 = Aya® I ol
j€#72:=0 (mod ¢)
Since Ayats#1, there must exist j € &, with j#0 (mod e), 2j=0 (mod e).
Hence e is even and j=e/2 (mod ¢). Furthermore, there must be an odd
number of such j in & ;. Since m;, is even, there must also be j € &; with
j=0 (mod e). So each &; contains some j=0 (mod e) if ¢ is even, or
j=e[2 (mod e) if ¢ is odd. Since |(x)|=e, [1, (5.2)] implies s=z if ¢ is
odd, and s=<r—1 if ¢ is even.

THEOREM 2. Assume Hypothesis B and G=G'. Suppose there is a
positive integer n such that ze|2(p"—1) but zefp"—1. Then

dzp—1t (t odd),
=p—t+1 (teven).

ProOF. Let g=p", and o be the isomorphism of K into K given by
x°=x1, all x € K. Let . be a representation of G with underlying module
L, and for each g € G, let £ (g)’ be the matrix obtained by replacing each
entry a;; of £(g) by ai;. Then g—L(g)° defines a representation of G
with an underlying indecomposable KG-module of dimension d which
we will call L°. If Ly=V,(4), then (L°)y=V,(A"), where A°=A1q.
(L*)y=V, (Ao~ [1, Lemma 2.3]. Note that A°(Aa~%)as=17""1,
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Since ze=|N/P| [2] and X is a linear character: N/P—K, ze|2(q—1)
implies A2¢~D=1]. It follows that the nonprojective summands of L'®L*
are self-dual. The conditions ze|2(¢—1), zefg—1 imply

3 v(2) + vy(e) = 1 + v(q — D).

Since e|p—1, it follows that z is even and hence d is even by [1, Proposition
5.10.

Suppose A?1=1. Since 1 is faithful on cyclic Z [1, Proposition
5.1], z]q—l. If e is odd, we have v,(z2)=1+47v,(9—1), a contradiction,
so e is even. Then the first paragraph of the proof of [1, Theorem 5.12]
shows that (A%)2#1+™? js an odd power of « for all 0=<i<s—1 with
i=(p+1)/2 (mod 2), where 2i+1+m,p is the dimension of the summand
of L®L with Green correspondent V,,, ,(A%x*™%). Since we may assume
d<p—1, there exist such i. Because z]2(2i+l+mip) [1, (5.10)] and
A% € (a), it follows that A% is an odd power of «. Now since 1=(12)"¢"/?,
we have »,((q—1)/z)=v,(e) which contradicts (3). Hence, 197151, so
L*&(L°)* and Lemma 1 may be applied.

ReMARKS. (i) [1, Theorem 5.18] is a special case of Theorem 2,
with z=2, ¢ odd, and the (now unnecessary) restriction L L*.

(if) The following numerical cases listed in [1, §8] are eliminated by
Theorem 2 (each 4-tuple is an instance of p, d, z, e): (29, 24, 8, 7),
(29, 24, 4, 14), (29, 26, 26, 28), (31, 24, 2, 30).

(iii) The assumptions of Theorem 2 are satisfied if we have Hypothesis
B, G=G', t odd, and z=2*, where either p=1 (mod 4) and k is any
positive integer, or p=3 (mod 4) and k=1 or k>»,(p+1). In particular,
if t=1 and z=2, then d=p—1. This bound is best possible, as there
is a group G=G" satisfying Hypothesis B, with p=7, z=2, and e=d=6,
such that G/Z is the Hall-Janko group of order 604,800 [3]. Feit has shown,
in work not yet published, that there is no G=G" satisfying Hypothesis B
with p=11, z=2, and e=d=10. For p>11, the existence of relevant
groups with z=2 and e=d=p—1 is apparently unknown.

Some notation is needed to state the next theorem. Assume Hypothesis
B and G=G'. Let Ly=V,(4). Define the integer x (=x(L), unique
modulo e) by A7=ol*@"V/2+% yhere square brackets denote the greatest
integer symbol. Since the determinant of the action of each element of G
on Lis 1, [1, Lemma 2.3] implies A?=a%“"""> Now z|d, so when z is
even, A= (4942 implies xd/z=0 (mod e).

THEOREM 4. Assume Hypothesis B with G=G’, t odd, and d even.
Suppose there is an odd positive integer n such that p*==1 (mod z) and
x(p"F1)/z=0 (mod e). Then d=p—1.
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PrROOF. Let g=p™, and let o be as in Theorem 2 (so (L%)y="V;(19)).
Since we may assume d<p—1, [1, Theorem 5.12] implies z is even.
Suppose g=1 (mod z) and x(¢—1)/z=0 (mod e). Then

291 — (/‘lz)(a—l)/z — °L((11—1)(411—1)/2)+(ar:(a—1)/z)

= lle-1/2)d-1) — , ((p-1)/2)(0dd integer) _  o/2
since d is even and n, t are odd. Thus 19151, (A2 1)2=1. It follows that
L’ and L* satisfy the hypotheses of Lemma 1.

Suppose g=—1 (mod z) and x(¢+1)/z=0 (mod e). Then

(e+1)d-1)/2)+H@le+1)/2) — o (la—-1)(d-1)/2)+a-1) —  (e/2)—s

A9+l — (Az)(a+1)/z =

So AAet#1, (A%4a%)?=1, whence L° and L satisfy the hypotheses of
Lemma 1.

COROLLARY 5. Assume Hypothesis B with G=G’, t odd, and d even.
Suppose there is an odd positive integer n such that p"=+1 (mod d).
Thendz=p—t.

MORE REMARKS. (iv) Theorem 4 eliminates the cases (17, 14, 14, 16)
and (31, 28, 14, 30) from [1, §8].

(v) The numerical assumptions of Corollary 5 hold if ¢ is odd and
d=2r, r a prime such that r=3 (mod 4).
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