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SOME CRITERIA FOR  THE NONEXISTENCE
OF  CERTAIN FINITE LINEAR  GROUPS

HARVEY I.  BLAU

Abstract. Let/? be a prime and G a finite group, not of type

L%(p), with a cyclic Sylow/"-subgroup P. Assume that G=G'. The

purpose of this note is to put some rather stringent lower bounds on

the degree d of a faithful indecomposable representation of G over

a field of characteristic/) given certain conditions on the normalizer

/Vand the centralizer CofPinC In particular, if the center of G has

order 2 and \N:C\=p-\, thenrf^/>-l.

This paper began when the author realized that some of the methods

in [1] were more powerful than he originally believed. Consequently,

elements of the argument below appeared in slightly less general form

(and with weaker application) in [1, §5]. Although the blanket hypotheses

of that section do not exactly coincide with those of our assertions (we

do not assume here that p^. 13 or that G is not of type L2ip) in Lemma 1

below), it should be clear that the results we quote from [1, §5] are

indeed valid in the context where they are applied.

Throughout the paper G denotes a finite group, p an odd prime, P

a Sylow /»-subgroup of G. N and C are, respectively, the normalizer

and centralizer of P in G, e=|A^:C|, t=ip—l)/e, and z is the order of

Z, the center of G. K is a field of characteristic p which is a splitting field

for all subgroups of G. If M is a A^G-module, M* denotes its dual. The

linear character a:N¡P->K is as defined in [1]. v2 is the usual 2-adic

valuation on the rationals.

Hypothesis A. \P\=p and N/P is abelian.

Hypothesis B. P is cyclic, G is not of type L2ip), and there is a faithful

indecomposable A^G-module L of dimension d=p—s^p.

Hypothesis B implies Hypothesis A by [2]. If group G and module L

satisfy Hypothesis B, then so do J and Lj, where J is the intersection

of the derived series of G. So the assumption G=G' is not a severe

restriction.
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Our first result generalizes [1, Lemma 5.15], and has almost the same

proof.

Lemma 1. Assume Hypothesis A and that G=G'. Suppose there exist

indecomposable KG-modules L and M of dimension d with p¡2<d<p such

that M^L* but the nonprojective summands of L®M are self-dual. Then

d^p — t it odd),

^ p — t + 1    (/ even).

Proof. Let LN= VdiX), MN= Vdiy) as in [1, §4]. Let s=p-d. M^L*

implies Xyas^l [1, Lemma2.3]. As in [1, §5], the nonprojective summands

of L®M are Lu O^i^s— 1, where dim Li=2i+l+mip and

U, = V2i+liXyas+i) + 2 VPiXyas+>).
iese.

As remarked in [1, §5], the Lt are self-dual if and only if iXyas)2=l.

Suppose m¿ is odd. Then, as in the proof of [1, Lemma 5.5], there is an

odd number of j=0 (mod e) in 0'i if / is even, and an odd number of

j=e\2 (mode) in 0'i if t is odd. Suppose mt is even. Then 2i+\+mip

is odd, so [1, (5.6)] and (Xyas)2=\ imply

1 = Xyas ¡I *'•
jeSf^i—O (mod e)

Since AycrV 1, there must exist y e 0\ withy'^0 (mod e), 2j=0 (mod e).

Hence e is even andy' = e/2 (mod e). Furthermore, there must be an odd

number of such y in 011. Since mi is even, there must also be j e 0'i with

j=0 (mode). So each 0,i contains some y'=0 (mode) if / is even, or

] = e\2 (mode) if t is odd. Since |(a)| = e, [1, (5.2)] implies s-^t if t is

odd, and s^t— 1 if t is even.

Theorem 2. Assume Hypothesis B and G=G'. Suppose there is a

positive integer n such that ze\2(pn—l) but ze)fpn—l. Then

d^p — t (t odd),

^ p — t + 1    (/ even).

Proof. Let q=pn, and a be the isomorphism of K into K given by

x"=xq, all x e K. Let J£? be a representation of G with underlying module

L, and for each g e G, let 0?(g)a be the matrix obtained by replacing each

entry ait of 0?(g) by a",. Then g-*0?(g)a defines a representation of G

with an underlying indecomposable XC7-module of dimension d which

we will call L". If LN=Vd(X), then (U)N= Vd(X°), where X" = X".
(L*)N= V^X-i-a-*) [1, Lemma 2.3]. Note that Xa(X~1a~s)as=X''-'1.
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Since ze=\N/P\ [2] and A is a linear character: N¡P-*K, ze\2(q— 1)

implies A2<9-1>=1. It follows that the nonprojective summands of L"®L*

are self-dual. The conditions ze\2(q— 1), zejfq—l imply

(3) v2(z) + v2(e) = 1 + v2(q - 1).

Since e\p—l, it follows that z is even and hence dis even by [1, Proposition

5.1].
Suppose X^1=l. Since X is faithful on cyclic Z [1, Proposition

5.1], z\q—l. If e is odd, we have v2(z) = l+v2(q— 1), a contradiction,

so e is even. Then the first paragraph of the proof of [1, Theorem 5.12]

shows that (Xs)ii+1+m'f js an 0dd power of a for all Org/rgs—1 with

i = (p+l)/2 (mod 2), where 2i+l+m¡p is the dimension of the summand

of L®L with Green correspondent V2i+x(X2as+i). Since we may assume

d<p—\, there exist such i. Because z\2(2i+l+mfp) [1, (5.10)] and

Xz e (a), it follows that Xz is an odd power of a. Now since 1 = (Xzys~1)/z,

we have v2((q— l)/z)^.v2(e) which contradicts (3). Hence, Xq~1^l, so

L*^(La)* and Lemma 1 may be applied.

Remarks, (i) [1, Theorem 5.18] is a special case of Theorem 2,

with z=2, t odd, and the (now unnecessary) restriction L^aL*.

(ii) The following numerical cases listed in [1, §8] are eliminated by

Theorem 2 (each 4-tuple is an instance of p, d, z, e): (29, 24, 8, 7),

(29, 24, 4, 14), (29, 26, 26, 28), (31, 24, 2, 30).
(iii) The assumptions of Theorem 2 are satisfied if we have Hypothesis

B, G = G', t odd, and z=2k, where either p=l (mod 4) and k is any

positive integer, or p=3 (mod 4) and k=l or k>v2(p+l). In particular,

if t=l and z=2, then d^.p—1. This bound is best possible, as there

is a group G = G' satisfying Hypothesis B, with/? = 7, z=2, and e=d=6,

such that G/Z is the Hall-Janko group of order 604,800 [3]. Feit has shown,

in work not yet published, that there is no G = G' satisfying Hypothesis B

with p=ll, z=2, and e=d=l0. For p>ll, the existence of relevant

groups with z=2 and e=d=p—l is apparently unknown.

Some notation is needed to state the next theorem. Assume Hypothesis

B and G=G'. Let LN=Vd(X). Define the integer x (=x(L), unique

modulo e) by Xz=aiz(d~1)/2]+x where square brackets denote the greatest

integer symbol. Since the determinant of the action of each element of G

on L is 1, [1, Lemma 2.3] implies Xd = ad(d~1)/2 Now z\d, so when z is

even, Xd=(Xz)dlz implies xd\z=0 (mod e).

Theorem 4. Assume Hypothesis B with G=G', t odd, and d even.

Suppose there is an odd positive integer n such that pn= + l (mod z) and

x(pn+\)lz=0 (mod e). Then d^p-t.
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Proof.   Let q=pn, and let a be as in Theorem 2 (so (Lr)N=Vi(Xq)).

Since we may assume d<p—l, [1, Theorem 5.12] implies z is even.

Suppose q = \ (mod z) and x(q— l)/z=0 (mod e). Then

jjcr-l _ o*\((i-1)/ï _     ((i-l)(d-l)/2)+(x(«-l)/z)

_ a<(î-l)/2)(<2-l> _     ((j>-l)/2)(odd integer) _     e/2

since d is even and n, t are odd. Thus AS_V1, (Aî_1)2=l. It follows that

L" and L* satisfy the hypotheses of Lemma 1.

Suppose q= — \ (mod z) and x(^-|-l)/z=0 (mod e). Then

¿î+l _ r%c\(q+l)h _ g({(.Q+l)(d-l)/2)+MQ+l)/z) _ a((a-t)(<i-t)/2)+(d-l) _ a<e/2)-s

So A9Aas#l, (AaAas)2 = l, whence L" and L satisfy the hypotheses of

Lemma 1.

Corollary 5. Assume Hypothesis B with G=G', t odd, and d even.

Suppose there is an odd positive integer n such that pn= + l (modd).

Then d~^.p—t.

More Remarks, (iv) Theorem 4 eliminates the cases (17, 14, 14, 16)

and (31, 28, 14, 30) from [1, §8].
(v) The numerical assumptions of Corollary 5 hold if t is odd and

d=2r, r a prime such that r=3 (mod 4).
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