SOME CRITERIA FOR THE NONEXISTENCE OF CERTAIN FINITE LINEAR GROUPS

HARVEY I. BLAU

ABSTRACT. Let p be a prime and G a finite group, not of type $L_2(p)$, with a cyclic Sylow p-subgroup P. Assume that G = G'. The purpose of this note is to put some rather stringent lower bounds on the degree d of a faithful indecomposable representation of G over a field of characteristic p given certain conditions on the normalizer N and the centralizer C of P in G. In particular, if the center of G has order 2 and |N:C|=p-1, then $d \ge p-1$.

This paper began when the author realized that some of the methods in [1] were more powerful than he originally believed. Consequently, elements of the argument below appeared in slightly less general form (and with weaker application) in [1, §5]. Although the blanket hypotheses of that section do not exactly coincide with those of our assertions (we do not assume here that $p \ge 13$ or that G is not of type $L_2(p)$ in Lemma 1 below), it should be clear that the results we quote from [1, §5] are indeed valid in the context where they are applied.

Throughout the paper G denotes a finite group, p an odd prime, P a Sylow p-subgroup of G. N and C are, respectively, the normalizer and centralizer of P in G, e=|N:C|, t=(p-1)/e, and z is the order of Z, the center of G. K is a field of characteristic p which is a splitting field for all subgroups of G. If M is a KG-module, M^* denotes its dual. The linear character $\alpha:N/P\to K$ is as defined in [1]. ν_2 is the usual 2-adic valuation on the rationals.

Hypothesis A. |P|=p and N/P is abelian.

Hypothesis B. P is cyclic, G is not of type $L_2(p)$, and there is a faithful indecomposable KG-module L of dimension $d=p-s \le p$.

Hypothesis B implies Hypothesis A by [2]. If group G and module L satisfy Hypothesis B, then so do J and L_J , where J is the intersection of the derived series of G. So the assumption G=G' is not a severe restriction.

Presented to the Society, January 16, 1974; received by the editors August 13, 1973. AMS (MOS) subject classifications (1970). Primary 20C20, 20C05; Secondary 20D05.

Key words and phrases. Indecomposable modular representation, small degree, cyclic Sylow p-subgroup.

Our first result generalizes [1, Lemma 5.15], and has almost the same proof.

LEMMA 1. Assume Hypothesis A and that G=G'. Suppose there exist indecomposable KG-modules L and M of dimension d with p/2 < d < p such that $M \approx L^*$ but the nonprojective summands of $L \otimes M$ are self-dual. Then

$$d \ge p - t$$
 (t odd),
 $\ge p - t + 1$ (t even).

PROOF. Let $L_N = V_d(\lambda)$, $M_N = V_d(\gamma)$ as in [1, §4]. Let s = p - d. $M \approx L^*$ implies $\lambda \gamma \alpha^s \neq 1$ [1, Lemma 2.3]. As in [1, §5], the nonprojective summands of $L \otimes M$ are L_i , $0 \leq i \leq s - 1$, where dim $L_i = 2i + 1 + m_i p$ and

$$L_{i_N} = V_{2i+1}(\lambda\gamma\alpha^{s+i}) + \sum_{j\in\mathscr{S}_i} V_p(\lambda\gamma\alpha^{s+j}).$$

As remarked in [1, §5], the L_i are self-dual if and only if $(\lambda \gamma \alpha^s)^2 = 1$.

Suppose m_i is odd. Then, as in the proof of [1, Lemma 5.5], there is an odd number of $j\equiv 0\pmod e$ in \mathscr{S}_i if t is even, and an odd number of $j\equiv e/2\pmod e$ in \mathscr{S}_i if t is odd. Suppose m_i is even. Then $2i+1+m_ip$ is odd, so [1, (5.6)] and $(\lambda\gamma\alpha^s)^2=1$ imply

$$1 = \lambda \gamma \alpha^s \prod_{j \in \mathscr{S}_s; 2j \equiv 0 \pmod{e}} \alpha^j.$$

Since $\lambda \gamma \alpha^s \neq 1$, there must exist $j \in \mathscr{S}_i$ with $j \not\equiv 0 \pmod e$, $2j \equiv 0 \pmod e$. Hence e is even and $j \equiv e/2 \pmod e$. Furthermore, there must be an odd number of such j in \mathscr{S}_i . Since m_i is even, there must also be $j \in \mathscr{S}_i$ with $j \equiv 0 \pmod e$. So each \mathscr{S}_i contains some $j \equiv 0 \pmod e$ if t is even, or $j \equiv e/2 \pmod e$ if t is odd. Since $|\langle \alpha \rangle| = e$, [1, (5.2)] implies $s \leq t$ if t is odd, and $s \leq t-1$ if t is even.

THEOREM 2. Assume Hypothesis B and G=G'. Suppose there is a positive integer n such that $ze|2(p^n-1)$ but $ze\not|p^n-1$. Then

$$d \ge p - t$$
 (t odd),
 $\ge p - t + 1$ (t even).

PROOF. Let $q=p^n$, and σ be the isomorphism of K into K given by $x^{\sigma}=x^q$, all $x\in K$. Let $\mathscr L$ be a representation of G with underlying module L, and for each $g\in G$, let $\mathscr L(g)^{\sigma}$ be the matrix obtained by replacing each entry a_{ij} of $\mathscr L(g)$ by a_{ij}^{σ} . Then $g\to\mathscr L(g)^{\sigma}$ defines a representation of G with an underlying indecomposable KG-module of dimension d which we will call L^{σ} . If $L_N=V_d(\lambda)$, then $(L^{\sigma})_N=V_d(\lambda^{\sigma})$, where $\lambda^{\sigma}=\lambda^q$. $(L^*)_N=V_d(\lambda^{-1}\alpha^{-s})$ [1, Lemma 2.3]. Note that $\lambda^{\sigma}(\lambda^{-1}\alpha^{-s})\alpha^s=\lambda^{q-1}$.

1974]

Since ze=|N/P| [2] and λ is a linear character: $N/P \rightarrow K$, ze|2(q-1) implies $\lambda^{2(q-1)}=1$. It follows that the nonprojective summands of $L^{\sigma}\otimes L^*$ are self-dual. The conditions ze|2(q-1), $ze\not|q-1$ imply

(3)
$$\nu_2(z) + \nu_2(e) = 1 + \nu_2(q-1).$$

Since e|p-1, it follows that z is even and hence d is even by [1, Proposition 5.1].

Suppose $\lambda^{q-1}=1$. Since λ is faithful on cyclic Z [1, Proposition 5.1], z|q-1. If e is odd, we have $v_2(z)=1+v_2(q-1)$, a contradiction, so e is even. Then the first paragraph of the proof of [1, Theorem 5.12] shows that $(\lambda^2)^{2i+1+m_ip}$ is an odd power of α for all $0 \le i \le s-1$ with $i \equiv (p+1)/2 \pmod{2}$, where $2i+1+m_ip$ is the dimension of the summand of $L\otimes L$ with Green correspondent $V_{2i+1}(\lambda^2\alpha^{s+i})$. Since we may assume d < p-1, there exist such i. Because $z|2(2i+1+m_ip)$ [1, (5.10)] and $\lambda^z \in \langle \alpha \rangle$, it follows that λ^z is an odd power of α . Now since $1 = (\lambda^z)^{(q-1)/z}$, we have $v_2((q-1)/z) \ge v_2(e)$ which contradicts (3). Hence, $\lambda^{q-1} \ne 1$, so $L^* \not\approx (L^\sigma)^*$ and Lemma 1 may be applied.

REMARKS. (i) [1, Theorem 5.18] is a special case of Theorem 2, with z=2, t odd, and the (now unnecessary) restriction $L\approx L^*$.

- (ii) The following numerical cases listed in [1, §8] are eliminated by Theorem 2 (each 4-tuple is an instance of p, d, z, e): (29, 24, 8, 7), (29, 24, 4, 14), (29, 26, 26, 28), (31, 24, 2, 30).
- (iii) The assumptions of Theorem 2 are satisfied if we have Hypothesis B, G=G', t odd, and $z=2^k$, where either $p\equiv 1\pmod 4$ and k is any positive integer, or $p\equiv 3\pmod 4$ and k=1 or $k>r_2(p+1)$. In particular, if t=1 and z=2, then $d\geq p-1$. This bound is best possible, as there is a group G=G' satisfying Hypothesis B, with p=7, z=2, and e=d=6, such that G/Z is the Hall-Janko group of order 604,800 [3]. Feit has shown, in work not yet published, that there is no G=G' satisfying Hypothesis B with p=11, z=2, and e=d=10. For p>11, the existence of relevant groups with z=2 and e=d=p-1 is apparently unknown.

Some notation is needed to state the next theorem. Assume Hypothesis B and G=G'. Let $L_N=V_d(\lambda)$. Define the integer x (=x(L), unique modulo e) by $\lambda^z=\alpha^{\lfloor z(d-1)/2\rfloor+x}$ where square brackets denote the greatest integer symbol. Since the determinant of the action of each element of G on L is 1, [1, Lemma 2.3] implies $\lambda^d=\alpha^{d(d-1)/2}$ Now z|d, so when z is even, $\lambda^d=(\lambda^z)^{d/z}$ implies $xd/z\equiv 0 \pmod e$.

THEOREM 4. Assume Hypothesis B with G=G', t odd, and d even. Suppose there is an odd positive integer n such that $p^n \equiv \pm 1 \pmod{z}$ and $x(p^n \mp 1)/z \equiv 0 \pmod{e}$. Then $d \geq p - t$.

286 H. I. BLAU

PROOF. Let $q=p^n$, and let σ be as in Theorem 2 (so $(L^{\sigma})_N=V_d(\lambda^q)$). Since we may assume d < p-1, [1, Theorem 5.12] implies z is even.

Suppose $q \equiv 1 \pmod{z}$ and $x(q-1)/z \equiv 0 \pmod{e}$. Then

$$\lambda^{q-1} = (\lambda^z)^{(q-1)/z} = \alpha^{((q-1)(d-1)/2) + (x(q-1)/z)}$$
$$= \alpha^{((q-1)/2)(d-1)} = \alpha^{((p-1)/2)(\text{odd integer})} = \alpha^{e/2}$$

since d is even and n, t are odd. Thus $\lambda^{q-1} \neq 1$, $(\lambda^{q-1})^2 = 1$. It follows that L^{σ} and L^* satisfy the hypotheses of Lemma 1.

Suppose $q \equiv -1 \pmod{z}$ and $x(q+1)/z \equiv 0 \pmod{e}$. Then

$$\lambda^{q+1} = (\lambda^z)^{(q+1)/z} = \alpha^{((q+1)(d-1)/2) + (\alpha(q+1)/z)} = \alpha^{((q-1)(d-1)/2) + (d-1)} = \alpha^{(e/2) - s}.$$

So $\lambda^{q}\lambda\alpha^{s}\neq 1$, $(\lambda^{q}\lambda\alpha^{s})^{2}=1$, whence L^{σ} and L satisfy the hypotheses of Lemma 1.

COROLLARY 5. Assume Hypothesis B with G=G', t odd, and d even. Suppose there is an odd positive integer n such that $p^n \equiv \pm 1 \pmod{d}$. Then $d \geq p-t$.

MORE REMARKS. (iv) Theorem 4 eliminates the cases (17, 14, 14, 16) and (31, 28, 14, 30) from [1, §8].

(v) The numerical assumptions of Corollary 5 hold if t is odd and d=2r, r a prime such that $r\equiv 3 \pmod{4}$.

REFERENCES

- 1. H. I. Blau, Under the degree of some finite linear groups, Trans. Amer. Math. Soc. 155 (1971), 95-113. MR 43 #367.
- 2. W. Feit, Groups with a cyclic Sylow subgroup, Nagoya Math. J. 27 (1966), 571-584. MR 33 #7404.
- 3. J. H. Lindsey II, On a six dimensional projective representation of the Hall-Janko group, Pacific J. Math. 35 (1970), 175-186. MR 42 #7769.

DEPARTMENT OF MATHEMATICAL SCIENCES, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115