ON THE DOMINATED ERGODIC THEOREM IN L_2 SPACE M. A. AKCOGLU¹ AND L. SUCHESTON² ABSTRACT. Let T be a contraction on L_2 of a σ -finite measure space, $A_n(T)$ the operator $(1/n)(T^0+\cdots+T^n)$, S(T)f the function $\sup_n|A_n(T)f|$. THEOREM 1. Assume that, whatever be the measure space, $S(U)f \in L_2$ for each unitary operator U on L_2 and each function $f \in L_2$. Then there exists a universal constant K such that $\|S(T)f\| \le K\|f\|$ for each contraction T on L_2 and each $f \in L_2$. THEOREM 2. Let T be a contraction on L_2 and let U be a unitary dilation of T acting on a Hilbert space H containing L_2 . If all expressions of the form $\sum_{n=1}^{\infty} P_n A_n(U)$, where P_n are mutually orthogonal projections, are bounded operators on H, then for each $f \in L_2$, $S(T)f \in L_2$ and $A_n(T)f$ converges a.e. Let T be a contraction on L_2 of a σ -finite measure space (X, \mathcal{F}, μ) . $A_n(T)$ is the operator $(1/n)(T^0+\cdots+T^n)$. If f is a function in L_2 , let S(T)f be the function $\sup_{n>0}|A_n(T)f|$. One of the unresolved problems of ergodic theory is whether $A_n(T)f$ converges almost everywhere for each f in L_2 . It is known that the result would be implied by the *dominated ergodic theorem*; i.e., the existence of a constant K such that for all $f \in L_2$ $$||S(T)f|| \leq K ||f||.$$ We show below that if the dominated ergodic theorem holds for unitary operators (\equiv invertible isometries) on L_2 , then it holds for contractions. Whether the theorem holds for unitary operators on L_2 is still not known. It may be pointed out that the dominated ergodic theorem holds for positive unitary operators (but perhaps not for positive contractions) on L_2 , as shown by E. M. Stein (see [4, p. 367] and [5, p. 87]), and for invertible, not necessarily positive, isometries on L_p , $1 , <math>p \ne 2$, as shown by Mrs. A. Ionescu Tulcea [4]. (Positive means $f \ge 0$ implies Received by the editors June 26, 1973. AMS (MOS) subject classifications (1970). Primary 47A35. Key words and phrases. Contraction, unitary operator, dilation, Hilbert space, dominated ergodic theorem, pointwise convergence. ¹ Research supported by the National Research Council of Canada Grant A3974. ² Research supported by National Science Foundation Grant GP 34118. $Tf \ge 0$ a.e.) For positive contractions on L_p , partial results were obtained by R. V. Chacon and J. Olsen [2], and Chacon and S. M. McGrath [1]. We also prove a result about *individual* contractions which may be of interest should the general conjecture prove to be false. Given an operator U, call V a decomposition of U iff V is of the form $\sum_{n=1}^{\infty} P_n A_n(U)$, where P_n are mutually orthogonal projections. Let T be a contraction on L_2 and U a unitary dilation of T acting on a space $H \supseteq L_2$. We prove that if all decompositions of U are bounded operators on H then $S(T)f \in L_2$ for each $f \in L_2$, and hence $A_n(T)f$ converges almost everywhere. THEOREM 1. Assume that, whatever be the space L_2 , $S(U)f \in L_2$ for each unitary operator U on L_2 and each function $f \in L_2$. Then there exists a constant K such that (1) holds for each contraction T on L_2 and each $f \in L_2$. PROOF. We first observe that there is a constant K such that $$(2) ||S(U)f|| \le K ||f||$$ for all $f \in L_2$ and all unitary operators U on L_2 . Otherwise for $n=1, 2, \dots$, there would exist measure spaces $(X_n, \mathscr{F}_n, \mu_n)$, unitary operators U_n on $L_2(X_n, \mathscr{F}_n, \mu_n)$, and functions $g_n \in L_2(X_n, \mathscr{F}_n, \mu_n)$, such that $\|g_n\|=1/n$ and $\|S(U_n)g_n\| \ge 1$. Let (X, \mathscr{F}, μ) be the direct sum $\bigoplus_{n=1} (X_n, \mathscr{F}_n, \mu_n)$, and represent a function f on X as $f=(f_n)$, where f_n is the restriction of f to X_n . Define a unitary operator U on $L_2(X, \mathscr{F}, \mu)$ by $U(f_n)=(U_nf_n)$. Then $g = (g_n) \in L_2(X, \mathscr{F}, \mu),$ but $$||S(U)g||^2 = \left\|\sum_{n=1}^{\infty} S(U_n)g_n\right\|^2 = \infty,$$ which is a contradiction. Thus (2) holds. Now let E_1, E_2, \dots , be disjoint measurable sets; write 1_E for the indicator function of a set E. For each unitary operator U, each $f \in L_2$ (3) $$\left| \sum_{n=1}^{\infty} 1_{E_n} A_n(U) f \right| \le S(U) f \quad \text{a.e.,}$$ which implies (4) $$\left\| \sum_{n=1}^{\infty} 1_{E_n} A_n(U) \right\| \leq K,$$ where in (4) 1_{E_n} are projection operators corresponding to the multiplication by 1_{E_n} , and K is the constant appearing in (2). Next observe that (4) may be generalized to (5) $$\left\| \sum_{n=0}^{\infty} P_n A_n(U) \right\| \leq K,$$ where U is a unitary operator on an arbitrary Hilbert space H, (P_n) is any sequence of mutually orthogonal projections on H, and K is again the constant in (2). This follows from the fact that given H and (P_n) , there exists $L_2(X, \mathcal{F}, \mu)$ isometrically isomorphic to H and such that under the isomorphism, P_n becomes 1_{E_n} . Now let T be any contraction on L_2 of an arbitrary measure space (X, \mathcal{F}, μ) . Then (6) $$\left\| \sum_{n=1}^{\infty} 1_{E_n} A_n(T) \right\| \le K$$ for any sequence of disjoint sets E_n in \mathcal{F} , where K is as before. To prove (6), apply the *dilation theorem* of Sz.-Nagy (cf. [6] or [3]; *dilations* in [6] are *power dilations* in the terminology of [3]): there exists a Hilbert space H, a projection P, and a unitary operator U on H such that $PH = L_2(X, \mathcal{F}, \mu)$ and $T^n = PU^n$ for $n = 1, 2, \cdots$. Then $A_n(T) = PA_n(U)$, hence $1_{E_n}A_n(T) = 1_{E_n}PA_n(U)$. $P_n = 1_{E_n}P$ form a set of mutually orthogonal projections, and therefore (6) follows from (5). Finally, to conclude the proof of the theorem, note that given T and f there exist mutually disjoint sets E_1, E_2, \cdots such that $S(T)f = |\sum_{n=1}^{\infty} 1_{E_n}A_n(T)f|$. Hence (7) $$||S(T)f|| \le \left\| \sum_{n=1}^{\infty} 1_{E_n} A_n(T) \right\| \cdot ||P|| \cdot ||f|| \le K ||f||. \quad \Box$$ Now consider the case of an individual contraction T. THEOREM 2. Let T be a contraction on $L_2(X, \mathcal{F}, \mu)$ and let U be a unitary dilation of T acting on a Hilbert space H. If all decompositions of U are bounded operators on H, then, for each $f \in L_2$, $S(T)f \in L_2$ and $A_n(T)f$ converges a.e. PROOF. Let $f \in L_2$, $E_n = \{x \in X : |A_n(T)f| = S(T)f\}$, $P_n = 1_{E_n}P$, where P is a projection such that $T^n = PU^n$, $n = 1, 2, \cdots$. Disjoint the sets E_n if necessary. If there exists a constant C = C(T, f) such that $$\left\|\sum_{n=0}^{\infty} P_n A_n(U)\right\| \leq C,$$ then the relation (7) holds with C replacing K, showing that $S(T)f \in L_2$. The proof of the pointwise convergence of $A_n(f)$ is like in [1] or [4]. \square REMARK. It is clearly of interest to consider only the *minimal* unitary dilation U_0 of T, since each unitary dilation reduces to U_0 on $\bigvee_{n=-\infty}^{+\infty} U_0^n L_2$ (cf. [6]). We finally note that sequences of successive Cesàro averages of powers of operators in Theorems 1 and 2 may be replaced by sequences of any linear combinations of powers; the proofs remain the same. ADDED IN PROOF. Professor D. L. Burkholder has pointed out to us that a result of his, a consequence of his theory of semi-Gaussian spaces (Theorem 2, p. 128, Trans. Amer. Math. Soc. 104 (1962), implies that the dominated ergodic theorem fails for contractions on L_2 . Combining this with the results of the present paper, one obtains that the answer to the question about unitary operators raised in the introduction is negative: There exists a unitary operator on L_2 for which the dominated ergodic theorem fails. ## REFERENCES - 1. R. V. Chacon and S. A. McGrath, Estimates of positive contractions, Pacific J. Math. 30 (1969), 609-620. MR 40 #4421. - 2. R. V. Chacon and J. Olsen, *Dominated estimates of positive contractions*, Proc. Amer. Math. Soc. 20 (1969), 266-271. MR 40 #1579. - 3. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178. - **4.** A. Ionescu Tulcea, Ergodic properties of isometries in L_p spaces, 1 , Bull. Amer. Math. Soc.**70**(1964), 366–371. MR**34**#6026. - 5. E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1970. MR 40 #6176. - 6. B. Sz.-Nagy and C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson, Paris; Akad. Kiadó, Budapest, 1967; English transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest, 1970. MR 37 #778; 43 #947. DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210