CHARACTERIZATION OF FINITE-DIMENSIONAL Z-SETS

NELLY KROONENBERG1

ABSTRACT. It is proved that closed finite-dimensional subsets of Q and l_2 are Z-sets iff their complement is 1-ULC. As a corollary, closed finite-dimensional sets of deficiency 1 are shown to be Z-sets.

0. Introduction. J. L. Bryant and C. L. Seebeck have proved a homeomorphism extension theorem for k-dimensional compacta in \mathbb{R}^n with 1-ULC complements, where $2k+2 \leq n$ (see [3], [4]). Their results have been considerably generalized by M. A. Štan'ko. Štan'ko gives in [8] several definitions of "dimension-of-embedding" for closed subsets of \mathbb{R}^n and proves, besides equivalence of these definitions, the following result:

THEOREM (ŠTAN'KO). If K is a closed subset of R^n and $\dim(K) = k \le n-3$, then the dimension-of-embedding of K equals k iff $R^n \setminus K$ is 1-ULC. Otherwise it is equal to n-2. If $\dim(K) \ge n-2$, then the dimension-of-embedding coincides with ordinary dimension.

If the dimension gap between K and R^n is sufficiently large, then equality of both dimensions can be considered as a definition of tame embeddings. This apparatus cannot distinguish between tame and wild arcs in R^3 , because the dimension gap is too small.

Professor R. D. Anderson suggested to me that some generalization to the infinite-dimensional case might be possible. An intuitive rephrasing of Štan'ko's result is: If $R^n \setminus K$ is 1-ULC then $R^n \setminus K$ is locally and globally homotopically trivial up to as high a dimension as is compatible with the dimension of K. Stated this way, the obvious generalization to the cases $X=l_2$ and X=Q becomes: if K is a finite-dimensional closed subset of X, then K is a Z-set in X iff $X \setminus K$ is 1-ULC. This is the main theorem of this paper. The proof is a straightforward generalization of Štan'ko's proof of Proposition 5 in [8], applied to the infinite-dimensional case. However, no knowledge of infinite-dimensional topology is needed to follow the argument.

Received by the editors January 27, 1973.

AMS (MOS) subject classifications (1970). Primary 54F35, 57A20, 58B05; Secondary 57A15, 55B99.

Key words and phrases. Hilbert cube, Hilbert space, finite-dimensional Z-set, 1-ULC, homology, Alexander duality theorem, Hurewicz theorem.

¹ Supported in part by NSF Grant GP 34635X.

[©] American Mathematical Society 1974

1. **Definitions.** A closed subset K of a space X is a Z-set iff for every nonempty homotopically trivial open subset O of X, $O \setminus K$ is nonempty and homotopically trivial.² A map $f: X \to Y$ with Y metric is called ε -small if the diameter of f(X) is at most ε . A metric space Y is k-ULC (k-uniformly locally connected) if for all ε there exists a δ such that every δ -small map $f: S^k \to Y$ can be extended to an ε -small map $f: I^{k+1} \to Y$, where S^k is the combinatorial boundary of I^{k+1} . If we define $S^{-1} = \emptyset$ and $I^0 = \{0\}$ then (-1)-ULC means nonempty.

In special cases an alternative definition is possible. For this definition we use the term k-ULC⁻ instead of k-ULC. We shall work with $s = (-1, 1)^{\infty}$ rather than with l_2 . In [1] it is proved that $s \cong l_2$. For $X = Q = [-1, 1]^{\infty}$ or X = s, an open cube in X is a basis element of the product topology, i.e., a product of relatively open subintervals of [-1, 1] or (-1, 1) resp., such that only finitely many (maybe none) are different from the whole interval. In analogy to [8], we define: if K is a closed subset of K then $K \setminus K$ is k-ULC⁻ iff for every open cube $K \cap K$ every map $K \cap K$ can be extended to a map $K \cap K$. This definition is independent of the metric of $K \cap K$, but it refers instead to the embedding of $K \cap K$. For $K \cap K \cap K$ is $K \cap K \cap K$ is $K \cap K \cap K$ is only necessary to find a reasonably small open cube containing $K \cap K$ for any given $K \cap K \cap K$ but the converse does not generally hold. However, we can prove the following:

LEMMA 1.1. If $X=l_2$ or X=Q and K is a closed finite-dimensional subset of X then $X\setminus K$ is 1-ULC—iff $X\setminus K$ is 1-ULC.

PROOF. As remarked above, the former implies the latter. The proof of the converse is straightforward but tedious. Let $A \subseteq X$ be an open cube and let $f: S^1 \to A \setminus K$ be given. Let $F: I^2 \to A$ be any extension of f. Let $\varepsilon = \frac{1}{2}d(F(I^2), X \setminus A)$ (not the Hausdorff distance). Choose $\delta < \varepsilon$ such that every δ -small map $h: S^1 \to X \setminus K$ can be extended to an ε -small map $h: I^2 \to X \setminus K$. Now every less than $\delta/2$ -small $g: S^0 \to X \setminus K$ can be extended to a $\delta/2$ -small map $g: I \to X \setminus K$. Choose $\xi < \delta/6$ such that for every $x, y \in I^2$, $d(x, y) < \xi$ implies $d(F(x), F(y)) < \delta/6$. Let T be a ξ -fine simplicial subdivision of I^2 with i-skeletons T_i , i = 0, 1, 2. Choose $F_0: T_0 \to X \setminus K$ with

$$\max_{x \in T_0} d(F_0(x), F(x)) < \delta/6 \quad \text{and} \quad F_0|_{T_0 \cap S^1} = f|_{T_0 \cap S^1}.$$

Then, for adjacent $x, x' \in T_0$, $d(F_0(x), F_0(x')) < \delta/6 + 2 \cdot \delta/6 = \delta/2$. Moreover $F_0(T_0)$ is contained in a $\delta/6$ -neighborhood of $F(I^2)$. So we can connect

 $^{^2}$ For ANR's and in particular for open subsets of Q, homotopic triviality or contractibility is equivalent to triviality of all homotopy groups in positive dimensions (Palais [6]).

 $F_0(x)$ and $F_0(x')$ by a $\delta/2$ -small arc in $X\setminus K$. Thus we find $F_1\colon T_1\to X\setminus K$ with $F_1(T_1)$ contained in a $(\delta/2+\delta/6)$ -neighborhood of $F(I^2)$ and such that $F_1|_{S^1}=f$. For each 2-simplex $\Delta^{(j)}$ in T_2 , $F_1|_{\partial\Delta^{(j)}}$ is δ -small, hence can be extended to an ε -small map $F_2^{(j)}\colon \Delta^{(j)}\to X\setminus K$. Now $F_2=\bigcup_j F_2^{(j)}\colon I^2\to X\setminus K$ is the required extension of f. The only thing left to be proved is that $F_2(I^2)\subseteq A$. But $F_2(I^2)$ is contained in an $(\varepsilon+\delta/2+\delta/6)$ -neighborhood of $F(I^2)$ and since $\varepsilon+\delta/2+\delta/6<\varepsilon+\delta<2\varepsilon$, it follows by choice of ε that $F_2(I^2)$ is contained in A.

2. Theorems.

LEMMA 2.1. For $X \cong Q$ or $X \cong s$, if $A \subseteq X$ is an open cube and K is a finite-dimensional closed subset of X, then $A \setminus K$ has the homology of a point.

PROOF. As we shall see, this is a consequence of the Alexander duality theorem (see e.g. [7])³ and the fact that $H^q(K)=0$ if $q>k=\dim(K)$. Consider the set $s_f=\{x\in s\subset Q\big|x_i=0\text{ for all but finitely many }i\}$. This can be written as $\bigcup_n s_n$, with $s_n\cong R^n$, e.g., $s_n=\{x\big|x_i=0\text{ if }i>n\text{ and }|x_i|<1-1/n\text{ for }i=1,\cdots,n\}$. Define

$$g_{n,t}(x) = (1-t) \cdot x + t \cdot (1-1/2n) \cdot (x_1, \dots, x_n, 0, 0, \dots).$$

Then every map $\varphi: T \to s$ or $\varphi: T \to Q$, where T is any topological space, is homotopic to a map $\varphi' = g_{n,1} \circ \varphi: T \to s_n$ by a homotopy $(g_{n,t} \circ \varphi)_t$. The sets $\{g_{n,t} \circ \varphi(x): t \in [0,1]\}$ can be made uniformly small by choosing n sufficiently large. Let $\bigcup_n C_n$ be a corresponding set in $A \subset X$ and $\{(h_{n,t})_t\}_n$ be a corresponding family of homotopies such that $(h_{n,t})_t$ contracts A into C_n .

Let $T = \sum_i \lambda_i T_i$ be a q-cycle in $A \setminus K$. We show that it bounds in $A \setminus K$. If $\dim(K) = k$, then $H^m(K) = \{0\}$ for m > k. Because $K \cap C_n$ is a closed subset of C_n of dimension $\leq k$, by Alexander Duality we infer that for n > k + q + 1, $H_q(C_n \setminus K)$ is trivial. For sufficiently large m > k + q + 1, the cycle $T' = \sum_i \lambda_i h_{n,1} \circ T_i$ is a cycle in $C_m \setminus K$. Then T' also bounds in $A \setminus K$, and, using the homotopy $(h_{n,i})_t$, it is easily seen that T bounds in $A \setminus K$: specifically, define $T_i^I : \Delta_q \times I \to A \setminus K$ by $T_i^I(p,t) = h_{n,t} \circ T_i(p)$; let $S = \sum_j S_j$, with $S_j : \Delta_{q+1} \to \Delta_q \times I$ be a triangulation of $\Delta_i \times I$ such that ∂S includes among its terms $S_0 - \widetilde{S}_1$, where \widetilde{S}_i is the obvious map from Δ_q onto $\Delta_q \times \{i\}$. Let

³ One form of the Alexander duality theorem states that $\tilde{H}_q(R^n\backslash A)\cong H^{n-q-1}(A)$ for A compact and \tilde{H}_q denoting reduced singular homology. In case A is only closed and not compact, one can form the one-point compactification of R^n and A and remove a point $p\notin A$ from R^n . Then $A\cup\{\infty\}$ is a compact subset of $(R^n\cup\{\infty\})\backslash\{p\}\cong R^n$, and $A\cup\{\infty\}$ has the same dimension as A, and except maybe in the dimensions n-1 and n, $[(R^n\cup\{\infty\})\backslash\{p\}]\backslash(A\cup\{\infty\})=(R^n\backslash\{p\})\backslash A$ has the same homology groups as $R^n\backslash A$. Hence for a noncompact closed subset A of R^n and for q< n-1 we have $\tilde{H}_q(R^n\backslash A)\cong H^{n-q-1}(A\cup\{\infty\})$.

 $T' = \partial \tilde{T}$; then

$$\partial \left(\sum_{i,j} \lambda_i \cdot T_i^I \circ S_j \right) = T - T' \quad \text{and} \quad T = \partial \tilde{T} + \partial \left(\sum_{i,j} \lambda_i T_i^I \cdot S_j \right).$$

The following lemma is well known in the folklore. We will give a formal proof.

LEMMA 2.2. (a) If \mathcal{B} is a base for Q consisting of homotopically trivial open sets, then a closed subset K of Q is a Z-set in Q iff for every $B \in \mathcal{B}$, $B \setminus K$ is nonempty and homotopically trivial.

(b) If \mathcal{B} is the base for s consisting of all open cubes, then a closed subset K of s is a Z-set in s iff for every $B \in \mathcal{B}$, $B \setminus K$ is homotopically trivial.

PROOF OF (a). Suppose \mathcal{B} and K satisfy the conditions. Let O be a homotopically trivial open subset of Q and let $f: S^{q-1} \to O \setminus K$ be a map. We want an extension $f: I^q \to O \setminus K$ whereas we have an extension $g: I^q \to O$ (due to homotopic triviality of O).

Cover $g(I^q)$ by a finite cover $\mathcal{B}_1 \subseteq \mathcal{B}$ such that for each $B \in \mathcal{B}_1$, $B \subseteq O$. There exists a closed neighborhood V_1 of $g(I^q)$ which is also covered by \mathcal{B}_1 . Let ε_1 be a Lesbesgue-number for \mathcal{B}_1 as a covering of V_1 (i.e., each subset of V_1 with diameter less than ε_1 is contained in some element of \mathcal{B}_1). Define the mesh $m(\mathcal{A})$ of a collection \mathcal{A} as the supremum of the diameters of the elements of \mathscr{A} . Let $\mathscr{B}_2 \subseteq \mathscr{B}$ be a finite covering of $g(I^q)$ with $\bigcup \mathcal{B}_2 \subset V_1$ and with $m(\mathcal{B}_2) < \varepsilon_1/2$. There exists a closed neighborhood V_2 of $g(I^q)$ which is also covered by \mathcal{B}_2 . Again let ε_2 be a Lebesgue-number for \mathcal{B}_2 as a covering of V_2 . In this way, construct inductively a sequence of finite coverings $\mathscr{B}_1 \subseteq \mathscr{B}$, $\mathscr{B}_2 \subseteq \mathscr{B}$, \cdots , $\mathscr{B}_q \subseteq \mathscr{B}$ with Lebesgue numbers $\varepsilon_1, \dots, \varepsilon_q$ with respect to closed neighborhoods V_1, \dots, V_q of $g(I^q)$ and such that $\bigcup \mathcal{B}_{i+1} \subset V_i$ and $m(\mathcal{B}_{i+1}) < \varepsilon_i/2$. Because g is uniformly continuous there exists a $\delta > 0$ such that for $x, x' \in I^q$ and $d(x, x') < \delta, d(g(x), g(x')) < \delta$ $\varepsilon_a/3$. Let P be a simplicial subdivision of I^q of mesh smaller than δ . Let P_i be the *i*-skeleton of P, $i=0, 1, \dots, q$. Because for every $B \in \mathcal{B}$, $B \setminus K$ is nonempty, it follows that K is nowhere dense. Then there exists a mapping $\bar{f}_0: P_0 \to \bigcup \mathcal{B}_q \setminus K$ with $d(g|_{P_0}, \bar{f}_0) < \varepsilon_q/3$ and $\bar{f}_0|_{P_0 \cap S^{q-1}} = f|_{P_0 \cap S^{q-1}}$. Now for adjacent vertices $p, r \in P_0$

$$d(\bar{f}_0(p), \bar{f}_0(r)) \le d(\bar{f}_0(p), g(p)) + d(g(p), g(r)) + d(\bar{f}_0(r), g(r)) < \varepsilon_q.$$

Because ε_q is a Lebesgue-number for \mathscr{B}_q , \overline{f}_0 maps adjacent vertices into a common element of \mathscr{B}_q . Now $\{B \mid K \mid B \in \mathscr{B}_q\}$ consists of homotopically trivial sets; therefore we have an extension $\overline{f}_1: P_1 \rightarrow O \setminus K$ of \overline{f}_0 , such that all 1-simplices are mapped into an element of $\{B \mid K \mid B \in \mathscr{B}_q\}$, and such that $\overline{f}_1|_{P_1 \cap S^{q-1}} = f|_{P_1 \cap S^{q-1}}$. Furthermore it is easily seen that, if a mapping φ maps each face of an *i*-simplex onto a set of diameter $< \eta$, then φ maps

the boundary of the *i*-simplex onto a set of diameter $<2\eta$. Observing that $m(\{B\backslash K | B\in \mathcal{B}_q\}) < \frac{1}{2}\varepsilon_{q-1}$, one sees that the boundary of every 2-simplex of P_2 is mapped onto a set of diameter $<\varepsilon_{q-1}$, which is a Lebesgue-number of \mathcal{B}_{q-1} with respect to V_{q-1} . Since $\bar{f}_1(P_1) \subset \bigcup \mathcal{B}_q \subset V_{q-1}$, it follows that the image of the boundary of a 2-simplex of P_2 is contained in an element of \mathcal{B}_{q-1} . Using homotopic triviality of the sets $B\backslash K$ and $B\in \mathcal{B}_{q-1}$, one finds an extension $\bar{f}_2\colon P_2\to O\backslash K$ of \bar{f}_1 such that $\bar{f}_2\big|_{P_2\cap S^{q-1}}=f\big|_{P_2\cap S^{q-1}}$ and such that every 2-simplex of P_2 is mapped into a set $B\backslash K$, $B\in \mathcal{B}_{q-1}$. Repeating this procedure, we find eventually the desired extension $\bar{f}=\bar{f}_q$ of f.

PROOF OF (b). Suppose \mathcal{B} and K satisfy the conditions. For B an open subset of s, define $B^* = Q \setminus (s \setminus B)^-$. Thus B^* is the largest open subset of Q such that $B^* \cap s = B$. Since \mathcal{B} is the collection of *all* open cubes in s, $\mathcal{B}^* = \{B^* \mid B \in \mathcal{B}\}$ is a basis consisting of homotopically trivial open sets for Q. It is easily seen that $B^* \setminus K$ is homotopically trivial if $B \setminus K$ is. Thus K is a K-set in K, and according to K-set in K-set

MAIN THEOREM 2.3. If $X \cong s$ or $X \cong Q$ and K is a finite-dimensional closed subset of X, then K is a Z-set in X iff $X \setminus K$ is 1-ULC.

PROOF. Obviously the former implies the latter.

Let $X \setminus K$ be 1-ULC. According to Lemma 1.1, $X \setminus K$ is also 1-ULC. So for each open cube $A \subseteq X$, $A \setminus K$ has the homology of a point and has a trivial fundamental group. Now the Hurewicz theorem (see e.g. [7]) says that for a simply connected space Y the first nonvanishing homotopy group after π_0 is isomorphic to the first nonvanishing homology group after H_0 . Applied to $A \setminus K$, this shows homotopic triviality of $A \setminus K$. By Lemma 2.3, K is a K-set in K.

Using the standard Klee homeomorphism extension process, one can easily see that any arc in Q with deficiency 1 has property Z. In [5] D. W. Curtis showed moreover, using Klee-like techniques that closed finite-dimensional subsets of Q or s of sufficient deficiency have property Z. Indeed, as observed below, only deficiency 1 is needed; a result not obtainable directly using the Klee-Curtis methods.

COROLLARY 2.4. If $X \cong s$ or $X \cong Q$ and K is a closed finite-dimensional subset of X of deficiency 1 (i.e., K projects onto a point in at least 1 coordinate), then K is a Z-set in X.

PROOF.⁴ We must show that $X \setminus K$ is 1-ULC. We may suppose that K projects onto the point 0 in the first coordinate. Let $f: S^1 \to X \setminus K$ be given.

⁴ The same proof can also be used to prove the well-known theorem that if $K \subseteq E^n$, $\dim(K) \le n-3$ and K has deficiency 1, then $E^n \setminus K$ is 1-ULC.

We shall find an extension which is not more than twice as large. If $f(S^1)$ meets at most one of the sets $\{x_1>0\}$ and $\{x_1<0\}$ then the existence of an extension $f: I^2 \rightarrow X \setminus K$ is trivial. So suppose $f(S^1)$ meets both sides of the hyperplane $\{x_1=0\}$.

Let π_1 denote the projection onto the first coordinate and $\bar{\pi}$ the projection onto the hyperplane $\{x_1=0\}$. There exists a map $f': S^1 \to X \setminus K$ such that (1) $f'(S^1)$ is a 1-1 polygonal image of S^1 , (2) for any two different vertices p and q of $f'(S^1)$, $\pi_1(p) \neq \pi_1(q)$ and $\bar{\pi}(p) \neq \bar{\pi}(q)$, and (3) f' is arbitrarily close to f. If f' is sufficiently close to f then f and f' are homotopic in $X \setminus K$ by linear interpolation. Now since all vertices of $f'(S^1)$ have a different first coordinate, only finitely many points are mapped into the hyperplane $\{x_1=0\}$. Following S^1 in either direction, number these points p_1, \dots, p_n in the order in which they are encountered. Denote the inbetween intervals on S^1 by

$$T_1 = [f'^{-1}(p_1), f'^{-1}(p_2)], \cdots, T_n = [f'^{-1}(p_n), f'^{-1}(p_1)].$$

Using the 0-ULC property of $\{x_1=0\}\ K$ (this is due to finite-dimensionality of K) and the fact that all points p_i lie outside K (since they lie on $f'(S^1)$), it can be shown that every projected $\operatorname{arc} \bar{\pi} \circ f'(T_i)$ can be approximated by an arc $h_i(T_i)$ such that $d(\bar{\pi} \circ f'|_{T_i}, h_i)$ is arbitrarily small, $h_i(T_i) \subset \{x_1=0\}\ K$ and $h_i(T_i)$ has endpoints p_i and p_{i+1} (or, if i=n, endpoints p_n and p_1). Let $h: S^1 \to \{x_1=0\}\ K=\bigcup_i h_i$. Then h is homotopic to f' in $X\setminus K$ by linear interpolation. Next, h is homotopic to h_{ε} defined by $\bar{\pi} \circ h_{\varepsilon} = \bar{\pi} \circ h = h$ and $\pi_1 \circ h_{\varepsilon}(x) = \varepsilon$ for all $x \in S^1$. Since $\{x_1=\varepsilon\}$ is homotopically trivial, h_{ε} can be extended to $h_{\varepsilon}: I^2 \to \{x_1=\varepsilon\} = \{x_1=\varepsilon\}\ K$. Hence the original map $f: S^1 \to X\setminus K$ is extendable to the 2-cell, too. Moreover it will be observed that, if $f(S^1)$ has diameter $<\delta$, the extension to the 2-cell can easily be kept 2δ -small in any reasonable metric for X. This proves that $X\setminus K$ is 1-ULC, and therefore that K is a Z-set in X.

REMARK 2.5. If, for X=Q or $X=s, X\setminus K$ is dense, 1-ULC and 0-ULC and if L is a closed subset of K, then $X\setminus L$ is 1-ULC. Thus if K is a nowhere dense closed subset of X, not necessarily a Z-set, and $X\setminus K$ is 1-ULC and 0-ULC, then every closed finite-dimensional subset of K is a Z-set in X.

REFERENCES

- 1. R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519. MR 32 #8298.
- 2. —, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383. MR 35 #4893.
- 3. J. L. Bryant and C. L. Seebeck III, An equivalence theorem for embeddings of compact absolute neighborhood retracts, Proc. Amer. Math. Soc. 20 (1969), 256-258. MR 39 #6285.

- 4. J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46-51. MR 39 #6286.
- 5. D. W. Curtis, Property Z for function-graphs and finite-dimensional sets in I^{∞} and s, Compositio Math. 22 (1970), 19-22. MR 41 #4497.
- 6. R. S. Palais, Homotopy theory of infinite-dimensional manifolds, Topology 5 (1966), 1-16. MR 32 #6455.
 - 7. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.
- 8. M. A. Štan'ko, The embedding of compacta in Euclidean space, Mat. Sb. 83 (125) (1970), 234–255=Math. USSR Sb. 12 (1970), 234–254. MR 42 #8388.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803