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CHARACTERIZATION  OF FINITE-DIMENSIONAL Z-SETS

NELLY  KROONENBERG1

Abstract. It is proved that closed finite-dimensional subsets

of Q and /2 are Z-sets iff their complement is 1-ULC. As a corollary,

closed finite-dimensional sets of deficiency 1 are shown to be Z-sets.

0. Introduction. J. L. Bryant and C. L. Seebeck have proved a homeo-

morphism extension theorem for rc-dimensional compacta in Rn with

1-ULC complements, where 2k+2^n (see [3], [4]). Their results have

been considerably generalized by M. A. Stan'ko. Stan'ko gives in [8]

several definitions of "dimension-of-embedding" for closed subsets of Rn

and proves, besides equivalence of these definitions, the following result:

Theorem (Stan'ko). If K is a closed subset of Rn and dim(A") =

k^n — 3, then the dimension-of-embedding of K equals k iff R"\K is l-ULC.
Otherwise it is equal to n—2. If dim(ÄT)^«—2, then the dimension-of-

embedding coincides with ordinary dimension.

If the dimension gap between A'and Rn is sufficiently large, then equality

of both dimensions can be considered as a definition of tame embeddings.

This apparatus cannot distinguish between tame and wild arcs in R3,

because the dimension gap is too small.

Professor R. D. Anderson suggested to me that some generalization to

the infinite-dimensional case might be possible. An intuitive rephrasing

of Stan'ko's result is: If Rn\K is 1-ULC then Rn\K is locally and globally

homotopically trivial up to as high a dimension as is compatible with the

dimension of K. Stated this way, the obvious generalization to the cases

X=l2 and X=Q becomes: if A' is a finite-dimensional closed subset of X,

then A' is a Z-set in X iff X\K is 1-ULC. This is the main theorem of this

paper. The proof is a straightforward generalization of Stan'ko's proof

of Proposition 5 in [8], applied to the infinite-dimensional case. However,

no knowledge of infinite-dimensional topology is needed to follow the

argument.

Received by the editors January 27, 1973.

AMS (MOS) subject classifications (1970). Primary 54F35, 57A20, 58B05; Secondary
57A15, 55B99.

Key words and phrases. Hubert cube, Hubert space, finite-dimensional Z-set, 1-ULC,

homology, Alexander duality theorem, Hurewicz theorem.

1 Supported in part by NSF Grant GP 34635X.
© American Mathematical Society 1974

421



422 NELLY  KROONENBERG [April

1. Definitions. A closed subset AC of a space X is a Z-set iff for every

nonempty homotopically trivial open subset O of 2", 0\A'is nonempty and

homotopically trivial.2 A map /A"—»- Y with Y metric is called e-small if

the diameter offiX) is at most e. A metric space Y is k-ULC (k-uniformly

locally connected) if for all e there exists a ô such that every <5-small map

/: Sk-+ Y can be extended to an e-small map /: 74+1—>- Y, where Sk is the

combinatorial boundary of Ik+1. If we define S~l=0 and /°={0} then

(—1)-ULC means nonempty.

In special cases an alternative definition is possible. For this definition

we use the term rc-ULC— instead of A>ULC. We shall work with j=

(—1, l)" rather than with /2. In [1] it is proved that s^l2. For X=Q =

[—1, 1]°° or X=s, an open cube in X is a basis element of the product

topology, i.e., a product of relatively open subintervals of [—1, 1] or

(— 1, 1) resp., such that only finitely many (maybe none) are different from

the whole interval. In analogy to [8], we define : if K is a closed subset of X

then X\K is k-\JLC iff for every open cube A^X every map f:Sk->

,4\.ty can be extended to a map/: Ik+1-+A\K. This definition is independent

of the metric of X, but it refers instead to the embedding of K into X.

For X=Q or X=s, if K is A:-ULC— then K is fc-ULC (it is only necessary

to find a reasonably small open cube containing f(Sk) for any given

f:Sk—>-X) but the converse does not generally hold. However, we can

prove the following :

Lemma 1.1. IfX= l2 or X= Q and K is a closed finite-dimensional subset

ofX then X\K is l-ULC~ iff X\K is l-ULC.

Proof. As remarked above, the former implies the latter. The proof

of the converse is straightforward but tedious. Let A<= X be an open cube

and let/S1—«-/l^ be given. Let F.P^-A be any extension of/ Let e=

\d(F(P), X\A) (not the Hausdorff distance). Choose <5<e such that every

<3-small map h:S1^>-X\K can be extended to an e-small map h:I2—>-X\K.

Now every less than r5/2-small g:S°^>-X\K can be extended to a (5/2-small

map g:I—>-X\K. Choose f<(5/6 such that for every x, y eP, d(x,y)<i

implies d(F(x), F(y))<ô/6. Let F be a f-fine simplicial subdivision of P

with /-skeletons T¿, i=0, I, 2. Choose F0: T0-^>-X\K with

max d(F0(x), F(x)) < (5/6   and    F0\T nsl = f\Tnsl-
xeT0

Then, for adjacent x, x e T0, d(F0(x), F0(x'))<o¡6 + 2 • á/6 = á/2. More-

over F0(T0) is contained in a á/6-neighborhood of F(P). So we can connect

2 For ANR's and in particular for open subsets of Q, homotopic triviality or con-

tractibility is equivalent to triviality of all homotopy groups in positive dimensions

(Palais [6]).



1974] CHARACTERIZATION  OF FINITE-DIMENSIONAL Z-SETS 423

F0(x) and F0(*') by a r5/2-small arc in X\K. Thus we find F, : TX-+X\K with

FXCTX) contained in a (á/2 + (5/6)-neighborhood of F(/2) and such that

Fi|si=/. For each 2-simplex A(,) in T2, Fx\3äkat is ¿-small, hence can be

extended to an e-small map FÍn:AU)^X\K. Now F2=\Jj F¡i]:P^X\K

is the required extension of/. The only thing left to be proved is that

F2(/2)<=/i. But F2(/2) is contained in an (e+ó/2-r-(5/6)-neighborhood of

F(/2) and since e + á/2-(-(5/6<e + (3<2e, it follows by choice of e that

F2(/2) is contained in A.

2. Theorems.

Lemma 2.1. For X^.Q or X^s, if A<=X is an open cube and K is a

finite-dimensional closed subset ofX, then A\K has the homology of a point.

Proof. As we shall see, this is a consequence of the Alexander duality

theorem (see e.g. [7])3 and the fact that H\K) = 0 if q>k = dimiK). Con-

sider the set sf={x es<=Q\xi = Q for all but finitely many /}. This can be

written as \Jnsn, with jb^ä", e.g., s„={x\x(=-0 if i>n and |jc¿|<1 —1/n

for/=l, •**,«}. Define

gnJix) = il-t)-x + t-il- l\2n) ■ ixx, ■ ■ ■ , xn, 0, 0, • ■ •).

Then every map cp:T—>-s or <p:T—>-Q, where Fis any topological space, is

homotopic to a map <p'=gn.i ° f'-T—>-sn by a homotopy ign,t ° q>)t. The

sets {gn,t° <pix):t e [0, l]} can be made uniformly small by choosing n

sufficiently large. Let \Jn Cn be a corresponding set in A c A'and {(/»„,,)t}„

be a corresponding family of homotopies such that Qin ¡), contracts A into

Cn-

Let T= 2i KTi be a ^-cycle in A\K. We show that it bounds in A\K. If

dim(K)=k, then Hm(K) = {0} for m>k. Because A^nC^ is a closed subset

of Cn of dimension ^k, by Alexander Duality we infer that for n>k+q+1,

HQ(Cn\K) is trivial. For sufficiently large m>k+q+l, the cycle F' =

2< Knn.i ° F¿ is a cycle in Cm\K. Then T' also bounds in A\K, and, using

the homotopy (hnA)u it is easily seen that F bounds in A\K: specifically,

define T¡:AQxI^A\K by TÏ(j>,t)=hn,t<> Up); let S-^S,, with
S} : A0+1^-As x / be a triangulation of A¿x/ such that dS includes among

its terms S0 — Sx, where >S¿ is the obvious map from Aa onto A„x{/}. Let

3 One form of the Alexander duality theorem states that H(1(Rn\A)2¿Hn-"' 1(A) for A

compact and Hq denoting reduced singular homology. In case A is only closed and not

compact, one can form the one-point compactification of R" and A and remove a point

p$A from R". Then Av{<x>} is a compact subset of (/f"U{oo})\{/>}^/?", and /lU{oo}

has the same dimension as A, and except maybe in the dimensions n — \ and n,

[(RnV{œ})\{p}]\(A\J{œ}) = (Rn\{p})\A has the same homology groups as R"\A. Hence

for a noncompact closed subset A of R" and for q<n — \ we have H„(R"\A)q¿

/7"-'(/Iu(ii)).
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T' = dT; then

d (]>>< • T\ ° s) =T -T   and    T = Bf + 3 fol* * s\.

The following lemma is well known in the folklore. We will give a

formal proof.

Lemma 2.2. (a) If 38 is a base for Q consisting of homotopically trivial

open sets, then a closed subset K of Q is a Z-set in Q iff for every B e 38,

B\K is nonempty and homotopically trivial.

(b) If 3d is the base for s consisting of all open cubes, then a closed subset

K of s is a Z-set in s iff for every Be 38, B\K is homotopically trivial.

Proof of (a). Suppose 38 and K satisfy the conditions. Let O be a

homotopically trivial open subset of Q and let f:S"~1->0\K be a map. We

want an extension f:I"—*-0\K whereas we have an extension g:Iq-+0

(due to homotopic triviality of O).

Cover g(I") by a finite cover I^J such that for each B e 38 x, B<= O.

There exists a closed neighborhood Vx of g(I") which is also covered by

38x. Let sx be a Lesbesgue-number for 01 as a covering of Vx (i.e., each

subset of Vx with diameter less than sx is contained in some element of 38x).

Define the mesh m(sé) of a collection sé as the supremum of the diameters

of the elements of sé. Let 382<^38 be a finite covering of gil") with

U 382<^ Vx and with m(^2)<e,/2. There exists a closed neighborhood

V2 of g(I") which is also covered by 382. Again let e2 be a Lebesgue-number

for 382 as a covering of V2. In this way, construct inductively a sequence

of finite coverings 38x<^38, 382^ 38, ■ • •, 38m<=-& with Lebesgue numbers

ex, • • • , ev with respect to closed neighborhoods Vx, • ■ • , Vq of gil") and

suchthat (J ^¡+ic F,and wiâ^^Xe^.Becausegis uniformly continuous

there exists a ô>0 such that for x, x e I" and d(x, x')<ô, d(g(x),g(x'))<

ea/3. Let F be a simplicial subdivision of I" of mesh smaller than a. Let Pi

be the /-skeleton of P, i—0, 1, • ■ ■ , q. Because for every fief, B\K is non-

empty, it follows that K is nowhere dense. Then there exists a mapping

/o:í'o'^U-^\A'with£/(g|i,o,/0)<£j3 añé/0]ponS,-i=/|P(>ni8í-i. Now for

adjacent vertices p, r e P0,

d(f0(pyf0(r)) ^ d(f0(p), g(p)) + d(g(p), gir)) + d(f0(r), g(r)) < e9.

Because eq is a Lebesgue-number for 38q, f0 maps adjacent vertices into

a common element of 38Q. Now {B\K\B e 38Q} consists of homotopically

trivial sets; therefore we have an extension fx:Px—>-0\K of/0, such that all

l-simplices are mapped into an element of {B\K\B e 38Q}, and such that

fi\i\r\S«-'-=f\p r\S«-i- Furthermore it is easily seen that, if a mapping tp

maps each face of an /-simplex onto a set of diameter <»j, then <p maps
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the boundary of the /-simplex onto a set of diameter <2r¡. Observing that

m({B\K\B e 38q})<\eq_x, one sees that the boundary of every 2-simplex

of F2 is mapped onto a set of diameter <eQ_x, which is a Lebesgue-number

of 38a_x with respect to Va_x. Since fxiPx)<= \J 38 „^ Vq_x, it follows that

the image of the boundary of a 2-simplex of P2 is contained in an element

of 3$q_x. Using homotopic triviality of the sets B\K and B e 38q__x, one

finds an extension f2:P2-^-0\K of /, such that f2\P ns«-i=/|p2ns»-i and

such that every 2-simplex of F2 is mapped into a set B\K, B e 38q_x.

Repeating this procedure, we find eventually the desired extension f=fq

off
Proof of (b). Suppose 38 and K satisfy the conditions. For B an open

subset of s, define B* = Q\(s\B)~. Thus B* is the largest open subset of Q

such that B* Cis=B. Since 38 is the collection of all open cubes in s,

38* = {B*\B e 38} is a basis consisting of homotopically trivial open sets

for Q. It is easily seen that B*\R is homotopically trivial if B\K is. Thus R

is a Z-set in Q, and according to [2], K is a Z-set in s.

Main Theorem 2.3. If X^s or X^Q and K is a finite-dimensional

closed subset of X, then K is a Z-set in X iff X\K is l-ULC.

Proof.    Obviously the former implies the latter.

Let X\K be 1-ULC. According to Lemma 1.1, X\K is also 1-ULC-.

So for each open cube A<= X, A\K has the homology of a point and has a

trivial fundamental group. Now the Hurewicz theorem (see e.g. [7]) says

that for a simply connected space Y the first nonvanishing homotopy

group after 7r0 is isomorphic to the first nonvanishing homology group

after H0. Applied to A\K, this shows homotopic triviality of A\K. By

Lemma 2.3, A' is a Z-set in X.

Using the standard Klee homeomorphism extension process, one can

easily see that any arc in Q with deficiency 1 has property Z. In [5] D. W.

Curtis showed moreover, using Klee-like techniques that closed finite-

dimensional subsets of Q or s of sufficient deficiency have property Z.

Indeed, as observed below, only deficiency 1 is needed; a result not

obtainable directly using the Klee-Curtis methods.

Corollary 2.4. If X^.s or X^Q and K is a closed finite-dimensional

subset of X of deficiency 1 (i.e., K projects onto a point in at least 1 co-

ordinate), then K is a Z-set in X.

Proof.4 We must show that X\K is 1-ULC. We may suppose that K

projects onto the point 0 in the first coordinate. Let f.S1^>-X\K be given.

4 The same proof can also be used to prove the well-known theorem that if K<^En,

dim(/Oi;---3 and K has deficiency 1, then £-\ATis 1-ULC.
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We shall find an extension which is not more than twice as large. If/(S1)

meets at most one of the sets {*i>0} and {xx<0} then the existence of an

extension f:P-*X\K is trivial. So suppose/(51) meets both sides of the

hyperplane {xx=0}.

Let trx denote the projection onto the first coordinate and if the pro-

jection onto the hyperplane {xx=0}. There exists a map/':51->A'\ÄT such

that (l)f'(S1) is a 1-1 polygonal image of S1, (2) for any two different

vertices p and q off'(Sx), trx(p)^Trx(q) and if(p)^if(q), and (3)/' is arbi-

trarily close to/. If/' is sufficiently close to /then /and/' are homotopic

in X\K by linear interpolation. Now since all vertices of f'(Sv) have a

different first coordinate, only finitely many points are mapped into the

hyperplane {xx=0}. Following S1 in either direction, number these points

px, ' ■ • ,pn in the order in which they are encountered. Denote the in-

between intervals on S1 by

tx = Lf-w/'-1^)], • • ■, Tn = ir\pn),f'-\Px)].

Using the 0-ULC property of {x1=0}\A' (this is due to finite-dimensionality

of K) and the fact that all points pt lie outside K (since they lie on/'(S1)),

it can be shown that every projected arc 7? °/'(F¿) can be approximated

by an arc /í¿(F¿) such that dirt °/'|t.» ht) is arbitrarily small, hA\T^

{xx=0}\K and h¡(T¿) has endpoints p¡ and pi+1 (or, if i=n, endpoints pn

and px). Let h:S1^{xx=0}\K=\Ji h{. Then h is homotopic to/' in X\K

by linear interpolation. Next, h is homotopic to he defined by if ° hs =

if o h=h and trx ° he(x) = e for all x e S1. Since {xx = e} is homotopically

trivial, hc can be extended to ht:P^>{xx = e} = {xx = e}\K. Hence the original

map/: Sl-+X \Kis extendable to the 2-cell, too. Moreover it will be observed

that, if/(S1) has diameter <ô, the extension to the 2-cell can easily be

kept 2(5-small in any reasonable metric for X. This proves that X\K is

1-ULC, and therefore that K is a Z-set in X.

Remark 2.5. If.for X= Qor X=s,X\K is dense, 1-ULC and 0-ULC and

if L is a closed subset of K, then X\L is I-ULC. Thus if K is a nowhere

dense closed subset of X, not necessarily a Z-set, and X\K is 1-ULC and

0-ULC, then every closed finite-dimensional subset of A" is a Z-set in X.
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