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A PROPERTY  OF TRANSFERABLE  LATTICES

G.  GRÄTZER1

Abstract. A lattice K is transferable if whenever K can

be embedded into the ideal lattice of a lattice L, then K can be

embedded in L. An element is called doubly reducible if it is both

join- and meet-reducible. In this note it is proved that every lattice

can be embedded into the ideal lattice of a lattice with no doubly

reducible element. It follows from this result that a transferable

lattice has no doubly reducible element.

1. Introduction. In [5] two concepts of transfeiability of a lattice

were introduced, named transferability and weak transferability in [2] and

named sharp transferability and transferability, respectively, in this paper

and [4]. A rather satisfying theory of sharp transferability can be found in

[2] and [4]; see also [3] for the case of semilattices. Recently K. Baker

proved that all finite projective lattices are transferable (see [1]). Still, the

only known property of transferable lattices is the one announced in

[5] without proof. The purpose of this note is to supply a proof of this

property (see Theorem below).

First, two definitions. A lattice K is called weakly transferable iff

whenever K can be embedded into the lattice of all ideals of a lattice L,

then AT can also be embedded into L. Observe, that in the papers referred

to above the finiteness of K is also assumed; for the purposes of this note,

however, it is not necessary to assume that K is finite. An element a

of the lattice K is doubly reducible iff there exist elements x, y, z, u of K,

all distinct from a, such that a=xVy=zAu.

Theorem.    A transferable lattice contains no doubly reducible element.

2. Proof of the Theorem. Let A and B be posets. The lexicographic

product of A and B, denoted by A®B, is a poset defined on A xB with

the ordering (a, a' e A, b, b' e B):

(1)        (a, b) ^ (a, b')    iff   a < a    or   a = a    and   b ^ b'.

In this note, let A and B be lattices and let B have a least element 0

and largest element 1.
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Lemma 1.    A®B is a lattice and, for a, a' e A, b, b' e B, we have that

(2) (a, b) V (a', b') = (a V a', b")

with suitable b" e B; in fact, if a and a' are incomparable, then b"=0.

Proof. Trivial; observe, that if a<a', then b"=b'; if a'<.a, then

b"=b; if a=a', then b"=bwb'.
Call an elementpjoin-reducible ifp=xVy v/ithp^x andpj£y; otherwise

p is join-irreducible. The dual concepts are meet-reducible and meet-

irreducible. From Lemma 1 we conclude immediately:

Corollary 2. All join-reducible elements of A®B are of the form

(a, b) where b=0 or b is join-reducible in B.

Corollary 2 and its dual yield :

Corollary 3. Let us assume that B has more than one element,

and 0 is meet-irreducible, and 1 is join-irreducible in B. Then all doubly

reducible elements of A®B have the form (a, b), where b is doubly reducible

in B. In particular, if B has no doubly reducible element, then neither does

A®B.

Now we map ideals of A into ideals of A®B. Let / be an ideal of A.

We set

(3) / = {(a, b)\aeI,beB}.

Lemma 4. For any ideal I of A, the set I is an ideal of A®B. The map

I-+I is one-to-one, and for ideals I and J of A it satisfies

(4) IM=ilAJ)-;

it also satisfies

(5) 7v/=(/vJ)~

provided that IVJ is not a principal ideal:

Proof. It follows immediately from (1) and (2) that (3) defines an

ideal. Now, (a, b) e IaJ iff (a, b) el and (c, b) eJ, which is, by (3),
equivalent to a e I and a e J, that is, to a e IaJ, which means that

(a, b)eilA J)~,

proving (4).

By (4), the inclusion "£" is obvious in (5). To prove the reverse

inclusion, let

(a,b)eilvj)~.
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Then aelwJ by (3); since, by hypothesis, IvJ is not principal, there

exists an a' e IvJ satisfying a<a'. Also, since a' elvj, we get elements

i, / of A with a'^ivj, i e I, j eJ. By (3), (/, 0) e /, (j, 0) eJ, and so,

using (1) and (2),

(a, b) < (i Wj, 0) = (i, 0) v (j, 0) e I v J,

proving the reverse inclusion, and thus Lemma 4.

Next, we need a trivial construction.

Lemma 5. Let K he an arbitrary lattice. K has an embedding cp into

the lattice of all ideals of a suitable lattice L such that, for all a e K, acp is

a nonprincipal ideal of L.

Proof. For instance, let N be the chain of natural numbers, L=KxN,

and, for ae K, set acp = {(x, n)\x^a}.

Combining the embeddings of Lemma 4 (with, say, B the two-element

chain) and Lemma 5 we obtain the main result of this note :

Theorem 6. Every lattice K can be embedded into the lattice of all

ideals of some lattice L with no doubly reducible element.

The Theorem of the Introduction follows immediately from Theorem 6.

Indeed, if A'is a transferable lattice, then we embed AT into I(L) by Theorem

6, where L is a lattice with no doubly reducible element. By transferability,

K can be embedded into L; hence K has no doubly reducible element.
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