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THE EXTENSION  OF REGULAR HOLOMORPHIC MAPS1

H.   L.   ROYDEN

Abstract. Let / be a holomorphic map of a /c-dimensional

polydisk in C into an »--dimensional complex manifold M which is

regular at the origin. It is shown that /can be extended to a neigh-

borhood in C" of a slightly smaller polydisk so that the extension is

also regular. If/ is an embedding or immersion, then the extension

may also be taken to be an embedding or immersion.

Let A* be the unit polydisk in Ck, and let A* denote the polydisk of

radius r. Suppose that/is a holomorphic map of A* into an «-dimensional

complex manifold M, and suppose that/is regular at 0; i.e., its Jacobian

matrix has rank k there. In the infinitesimal theory of the Kobayashi

metric (cf. [4]), it is important to know that/can be extended to a map

F, defined on a neighborhood A* x An~k in C" of a slightly smaller poly-

disk A*, so that F is also regular at 0. It is the purpose of this note to

establish this result (Proposition 2) and to show that F may be taken to

be an embedding or immersion provided/is (Propositions 1 and 3).

These results are not very difficult if M is a Stein manifold, and the

major effort in the proof is to show that we can reduce the problem to

that case. To do this, we construct, in the case of an embedding, an open

subset O of M, which contains /[Ä*] and is Stein.

The proofs given here extend to the case when Ak is replaced by any

contractible domain of holomorphy D in Ck and Ä* by any compact

subset of D. Chester Seabury has extended these results to the case when

Ak is replaced by any contractible Stein manifold, and has generalizations

for the case of arbitrary Stein manifolds.

We begin by considering the case when/is an embedding:

Proposition 1. Let f be a holomorphic embedding of the unit polydisk

Ak into an n-dimensional manifold M. Then, given r< 1, there is a holomor-

phic embedding FofAkX An~k into M such that F=f on A* X {0}.
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The function <f> defined in Ak by setting

^(z) = c2lZil2(l-|zi|2)-1

is, for c>0, a convex function tending to infinity as z approaches the

boundary of A*. Thus, for a suitable choice of c, the region D={z:</S(z)<l}

is convex, with Ä*<= D and flcA*. Choose an r'<\, so that £J<=A*,, and

denote A* by A'.

Since/is an embedding and/[Ä'] compact, we may choose for each

point a e A' a coordinate neighborhood U„ of f(a) with coordinates

z\, ■ ■ ■ , z\, w*+1, ■■■ ,wl such that Ux = {(zx, »Ô : I«í—«*l <«,|wíl <*}.

and such that, on Vx=f~1[Ua]r\A', the map/is given by f(z)=(z, 0).

We also assume 0„ is compact and contained in an open set where the

coordinates are still valid. Such coordinates and coordinate neighborhoods

are said to be admissible, and we will use only such coordinates in the

sequel. For convenience of notation, we identify A' with its image under

/, and the coordinates z with zx when H'a=0. Thus Vx = Ux t~\A'.

Cover Ä' by a finite collection {Ux} of admissible coordinate neighbor-

hoods. On Vxr\Vp, the Jacobian matrix of the coordinates (zx, wx) has

the form

7    Aafizy

0    Bxpiz)_

where the Bxß are holomorphic matrices satisfying Bxß = Bjx and

Bxy=BXßBßy. Thus the holomorphic matrices Bxßiz) define a holomorphic

vector bundle over A' (in fact, the normal bundle of the embedding).

Since A' is contractible and Stein, a theorem of Grauert [2, Satz 5] asserts

that this bundle is holomorphically trivial. Hence there are invertible

holomorphic matrices Bxiz) in Vx, such that Baß = BxBJ1. (Strictly speaking,

we may have to pass to a refinement of the covering {Vx}, but we again

call this refinement {VJ and choose corresponding Ux.) In Ux, we introduce

new coordinates by setting za=zx and h>ii=2>'~1(zci)m'c(. Then on VxC\Vß,

the Jacobian matrix of the new coordinates has the form

7   Axßiz)

ß       I

The matrices Axß now satisfy Axß=—Aßx and Aaß+Aßy=Axr Thus

they determine a one-dimensional cocycle on {Vx} with coefficients in

the sheaf 0A, with q=kin—k). Since i-P(A', Gq)=0, we may, possibly

after passing to a refinement of {Vx}, choose holomorphic matrices

Axiz) in Vx, so that Axß=Ax—Aß. In Ux, we define new functions by setting

zx=zx—Axizx)wx and wx=wx. Since the Jacobian of (za, wx) with respect
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to (za, wa) is nonzero on Va, and the mapping (za, wa)—>-(za, wa) is the

identity on Vx, it follows that (za, wx) are coordinates in some neighbor-

hood of Va. Since these are admissible coordinates, we have established

the following lemma:

Lemma 1. It is possible to choose admissible coordinates (za,wa) in

neighborhoods Ux covering A' so that, on Ux r\Uß nA', the Jacobian matrix

of (zx, wx) with respect to (zß, wß) is the identity.

We say that the coordinates (zx, wx) and (zß, wß) match to order / if,

in UxC\Uß, we have zx=zß + terms of order /+1 in wß, and wa=H^+terms

of order /+1 in wß.

Lemma 2. Given an integer />0, it is possible to choose coordinates

(zx, wx) in neighborhoods Ux covering A', so that (zx, wx) and (zß, wß)

match to order I in Uxr\Uß.

Proof. The case 1=1 is just Lemma 1. We proceed by induction,

assuming the lemma true for /— 1, and suppose we have chosen coordinates

which match to order /— 1 for some finite covering {Ux} of A'. In UxC\Uß,

zx = Zß + 2 AxßIizß)iwßy + oíw1;1)

and

w« = w, + 2 BxßIizß)iwßY + 0(wlß+1),
i

where the sums are taken over all multi-indices / of order /. Since, for

/>1, we have Axßl=-AßaI, AxyI=AxßI + AßyI, Bxßl=-BßxI, and

BxyI = BxßI+BßyI, the AxßI and BxßI define one-dimensional cocycles on

the covering {Vx}, with coefficients in the sheaf lV\, for suitable q. Since

//i(A', (5«)=0, we can find holomorphic vectors AxI(z) and BxI(z) in

Vx, so that Axßl=Axl — Aßl and BxßI=BxI—BßI. In Ux, define new func-

tions by

4 =  Za -  2 AccÁZJWí      atld      W« =  W« -  2 ßa/(Za)w£.

Then the functions (zx, wa) are coordinates in some neighborhood of Vx->

and we may choose new coordinate neighborhoods 0X, with 0X nA'= Va-

The new coordinates now match to order /, proving the lemma.

We now return to the domain Da A' and cover the image of D by a

finite number of coordinate neighborhoods Ux so that the coordinates

(zx, wx) match to the third order. Let {r¡x} be nonnegative C°°-functions

with the support of r¡x contained in Ux, such that 2 V<* is identically 1

on a neighborhood off ID]. We define functions on M by

«' = 2 va    j = 2 wl
a a
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Then «• and v* are everywhere defined differentiable functions, and in

Ux we have

u- - z* = 2 Vßiz'ß - O = 0(wx),

vi-< = 2vß(»>ß-<') = 0(wt).
ß

Hence (u, v) are differentiable coordinates in a neighborhood O of/[£>],

and we can reduce O so that the image of O under (u, v) is D x Bs, where

Bö is the ball 2 |»<|*<¿. Set p2=2 M2- Then in t/a nO we have

|«*|» - \z'x\2 = 0(p%       W\2 - K|* = 0(p«).

Let </> be the convex function on Afc introduced at the beginning of the

proof, and define a C^-function w¡ on DxBô by

y/l(u,l;)=^(u) + A-22l^2.

Then on Uar\0, we have

^(«, p) - y,xiza, wx) = 0(\ur - \z¡\2) + X~20iW\2 - K|2),

and so the Hessian of the difference with respect to the coordinates

izx, w„) is 0(p2) + X~20(p3) if X<1. The Hessian of ipx(zx, wx) is a diagonal

matrix, whose entries are c(l+|zj,|2)(l —|z^|2)-3 and X~2. Thus this Hessian

is a positive definite matrix larger than ci.

Let Ox be the subset of O, where ip¿(u,v)<l. Then 0x<=O if A<á.

In Öxr\Üx, the Hessian of ^(«, ") with respect to (zx, wx) is a matrix

which is greater than c/-r-0(p2) + /l~20(p3). But in Ox, we have p^X, and

so the Hessian is greater than cI+0(X). Thus there is a Xx such that

Va(«. *0 is strictly pluri-subharmonic in ÖkC\Ux for A<Aa. Choose

/l = min£( xa. Then y>x(u, v) is strictly pluri-subharmonic in Ök.

If we set «^=(1—Va)-1. then ^ is a pluri-subharmonic C°°-function

in Ok, and {p:<f>(p)^c} is a compact subset of 0À for each real c. It thus

follows [3, Theorem 5.2.10] that Ox is a Stein manifold. Since/[D]cO^

and Ä£c D, we have proved the following lemma:

Lemma 3. Let f be a holomorphic embedding of the unit polydisk Ak

into M. Then given r < 1, there is a convex domain D^Akr and an open subset

O of M, which contains f ID] and is Stein.

We now use the fact that, if/is an embedding of a Stein manifold D

into a Stein manifold O, there is a neighborhood U of the zero section

of the normal bundle of the embedding and an immersion F: U—>-0, such

that F restricted to the zero section is/(cf. [1, Hilfsatz 11]). Since D is

contractible and Stein, the normal bundle is equivalent to  DxCn~k,
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and any neighborhood of the zero section must contain A*xA"-* for

some sufficiently small e. Since F=f and is one-to-one on A*x{0}, we

may take e small enough so that F is one-to-one on A* x A"-*. By a

change of scale in the last n—k variables, we may replace A*x A"-* by

Ak.xA"~k. This completes the proof of the proposition.

We now remove the restriction that /is an embedding.

Proposition 2. Let f be a holomorphic map of the k-dimensional unit

polydisk Ak into an n-dimensional complex manifold M, and suppose

that f is regular at 0. Then, given r<l, there is a map F of Akx An~k into

M, which is regular at 0 and whose restriction to AkT x {0} isf

Proof. Let g be the mapping of Ak into A*xM, given by giz)=

(z,fiz)). Then g is an embedding. Hence by Proposition 1, there is an

embedding G of A*xA" into AfcxAf, which agrees with g on A*x{0}.

Let 77 : A* x M be projection onto the factor M. Then 77 ° g=f. Since/is

regular at 0, we can choose an («—&)-dimensional linear subspace £

of A", so that the map tt ° G restricted to A* x S is regular at 0. Since S

contains an («—rc)-dimensional polydisk A"-* about 0, which we can

take to be a unit polydisk by a change of scale, the proposition is estab-

lished if we take F to be the restriction of ir o G to A* x A"-*.

Proposition 3. Let f be a holomorphic immersion of the k-dimensional

polydisk Ak into the complex manifold M. Then, given r<l, there is an

immersion F of Ak.xAn~k into M, whose restriction to A*x{0} isf.

Proof. The proposition is an immediate consequence of Proposition

1 and the following standard lemma:

Lemma 4. Let f be an immersion of a k-dimensional complex manifold

Vinto an n-dimensional complex manifold M. Then there is an n-dimensional

complex manifold N, an embedding h of V into N, and an immersion g of

N into M such that f=g ° h.

Bibliography

1. O. Forster and K. J. Ramspott, Analytische Modulgarben und Endromisbiindel,

Invent. Math. 2 (1966), 145-170. MR 36 #1702.
2. H. Grauert, Analytische Faserungen über holomorphvollständigen Räumen, Math.

Ann. 135 (1958), 263-273. MR 20 #4661.
3. L. Hörmander, An introduction to complex analysis in several variables, Van Nos-

trand, Princeton, N.J., 1966. MR 34 #2933.
4. H. L. Royden, Remarks on the Kobayashi metric, Proc. Maryland Conf. on

Several Complex Variables, Lecture Notes in Math., vol. 185, Springer-Verlag, Berlin

and New York.

Department of Mathematics, Stanford University, Stanford, California

94305


