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Abstract. In this paper we give an alternative proof, without

reference to Urysohn's lemma, of the metrization theorem of

Bing [2], Nagata [6], and Smirnov [8] via the theory of symmetric

spaces as developed by H. Martin in [5].

A symmetric d on a point set X is a function XxX->[0, co) satisfying

(1) d(x,y)=0 if and only if x=y, and (2) d(x, y) = d(y, x). A topology F

on X is said to be determined by d provided that for every subset U of X,

U belongs to Fifand only if it contains an e-sphere N(p; e) (={x:d(p,x)<

e}) about each of its points/». The data X, d, and Fis called a symmetric

space. Such a space need not be Hausdorff or first countable, but H. W.

Martin [5] has proved the theorem below.

Theorem 1. Let Xbea topological space symmetrizable via a symmetric

d. If d(K, F)>0 whenever KC\F=0, K is compact, and F closed, then

X is metrizable.

This theorem strengthened an earlier theorem of A. V. Arhangel'skiï

[1], who introduced the notion of symmetric spaces. Martin achieves a

proof of Theorem 1 by showing that X must satisfy the hypotheses of

Mrs. Frink's theorem [3], a classical result in metrization theory. As a

corollary of Theorem 1, Martin (and Arhangel'skiï) obtains the theorem

of S. Hanai and K. Morita [4], and A. H. Stone [9] on the metrizability

of perfect images of metric spaces.

The purpose of this paper is to obtain the metrization theorem of

Bing [2], Nagata [6], and Smirnov [8] as a consequence of Theorem 1.

It is interesting to note that Urysohn's lemma is never used in this approach,

as was the case in the approach used by D. Rolfsen in [7]. More specif-

ically, let us assume that A' is a regular, Tx space with a c-locally finite

base 38=(Jn°=x38n, where 38n is locally finite and @n<=38n+x, n^l.
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For x,yeX, x^y, put m(x, y)=min{n:3B e 3Sn with x e B, y $ B},

t(x,y)=l¡m(x,y), and d(x,y) = max{t(x,y), t(y, x)}. Also, put d(x, x) =

0. Then we shall prove the following theorem.

Theorem 2. X is symmetrizable via d. Furthermore, d(K, F)>0

whenever KC\F= 0 , Kis compact, and F closed. Therefore, X is metrizable.

Proof. Denote by T and Td the given and ¿/-induced topologies on

X, respectively. We must show that (1) T<= Td, (2) Td<= T, and (3) d(K, F)>

0 whenever Kr>F= 0, K is compact, and F closed.

To establish (1), assume that B e 38, x e B. Choose Bxe 38 such that

x e Bx^BxcB. If Bx e 38n, we have N(x; l¡rí)^Bx^B, so that B is open

inFá.

To establish (2), let F be a Fd-closed set. If F is not F-closed (X is

first countable because of cr-locally finite 38), there is a point x $ F and

a sequence xx, x2, • ■ • of points in F converging to x. We shall show that

(i) lim^K, í(x, xt) = 0,

(ii) inf{í(x¿, x):i^.l}=0, so that

(iii) inf{dix, Xi):i^.l}=0 holds, which contradicts dix, F)>0.

To this end, let x e B e 38n. Denote by U the intersection of all members

of 38'„ containing x. There exists a positive integer N satisfying x{ e U

for i^.N, whence r(x, x¿)< 1/n. Since n can be chosen as large as we please,

(i) follows.

As for (ii), let x e B e 38n. Denote by V an open neighborhood of x

that intersects only finitely many members of 38n and satisfies F<=2?.

Choose N so that x4 e V for i^.N. Whenever i^.N, let U( represent the

intersection of all members of 38n containing x{. It follows that for

infinitely many such values of/, the sets Ut are identical, there being only

finitely many such intersections. Denoting such a common value by U,

it is clear that xeO, and therefore that r(x¡, x)<.l/n. This establishes

(ii), (iii), and (2).

To establish (3), let K be compact, F closed, and KC\F=0. Let

Bx, B2, ■ • ■ , Bk be a finite cover of K by members of 38 with Bi OF= 0 ,

i=l, ■ ■ ■ , k. Choose n such that Bt e 38n, i=l, ■ ■ ■ , k. Then we have

Q<lfn^tiK, F)<diK, F).
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