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METRIC AND SYMMETRIC SPACES

PETER W. HARLEY III

ABSTRACT. In this paper we give an alternative proof, without
reference to Urysohn’s lemma, of the metrization theorem of
Bing [2], Nagata [6], and Smirnov [8] via the theory of symmetric
spaces as developed by H. Martin in [S].

A symmetric d on a point set X is a function X' X X—[0, co) satisfying
(1) d(x, y)=0if and only if x=y, and (2) d(x, y)=d(y, x). A topology T
on X is said to be determined by 4 provided that for every subset U of X,
U belongs to T'if and only if it contains an e-sphere N(p; &) (={x:d(p,x) <
¢}) about each of its points p. The data X, d, and T is called a symmetric
space. Such a space need not be Hausdorff or first countable, but H. W.
Martin [5] has proved the theorem below.

THEOREM 1. Let X be a topological space symmetrizable via a symmetric
d. If d(K, F)>0 whenever KNF= @, K is compact, and F closed, then
X is metrizable.

This theorem strengthened an earlier theorem of A. V. Arhangel’skii
[1], who introduced the notion of symmetric spaces. Martin achieves a
proof of Theorem 1 by showing that X must satisfy the hypotheses of
Mrs. Frink’s theorem [3], a classical result in metrization theory. As a
corollary of Theorem 1, Martin (and Arhangel’skii) obtains the theorem
of S. Hanai and K. Morita [4], and A. H. Stone [9] on the metrizability
of perfect images of metric spaces.

The purpose of this paper is to obtain the metrization theorem of
Bing [2], Nagata [6], and Smirnov (8] as a consequence of Theorem 1.
It is interesting to note that Urysohn’slemma is never used in thisapproach,
as was the case in the approach used by D. Rolfsen in [7]. More specif-
ically, let us assume that X is a regular, T, space with a o-locally finite
base B=7., #,, where &, is locally finite and #,<%,,,, n=1.
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For x,ye X, x#y, put m(x,y)=min{n:3B € #, with x€ B, y ¢ B},
t(x, y)=1/m(x, ), and d(x, y)=max{t(x, y), t(y, x)}. Also, put d(x, x)=
0. Then we shall prove the following theorem.

THEOREM 2. X is symmetrizable via d. Furthermore, d(K, F)>0
whenever KNF= @, K is compact, and F closed. Therefore, X is metrizable.

Proor. Denote by T and T, the given and d-induced topologies on
X, respectively. We must show that (1) T< T, (2) T,= T, and (3) d(X, F)>
0 whenever KNF= g, K is compact, and F closed.

To establish (1), assume that Be &, x € B. Choose B; € # such that
x€B,<B,<=B.If B, € #,, we have N(x; 1/n)< B,< B, so that B is open
in T,.

To establish (2), let F be a T,-closed set. If F is not T-closed (X is
first countable because of o-locally finite %), there is a point x ¢ F and
a sequence X;, X,, * * * of points in F converging to x. We shall show that

() lim,_.q, 1(x, x,)=0,
(ii) inf{¢(x;, x):i=1}=0, so that

(iii) inf{d(x, x;):i=1}=0 holds, which contradicts d(x, F)>0.

To this end, let x € B € #,,. Denote by U the intersection of all members
of A, containing x. There exists a positive integer N satisfying x, e U
fori= N, whence ¢(x, x;)<1/n. Since n can be chosen as large as we please,
(i) follows.

As for (ii), let x € Be 4,. Denote by V an open neighborhood of x
that intersects only finitely many members of &%, and satisfies V< B.
Choose N so that x; € V for i=N. Whenever i=N, let U, represent the
intersection of all members of &%, containing x,. It follows that for
infinitely many such values of /, the sets U, are identical, there being only
finitely many such intersections. Denoting such a common value by U,
it is clear that x € U, and therefore that t(x;, x)<1/n. This establishes
(i), (iii), and (2).

To establish (3), let K be compact, F closed, and KNF=@2. Let
B,, B,, - - -, B, be a finite cover of K by members of # with B,NF=g,
i=1,---, k. Choose n such that B,€ #,, i=1,---, k. Then we have
0<L1/n=t(K, F)Sd(K, F).
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