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A PROBLEM  OF MARTIN  CONCERNING  STRONGLY
CONVEX  METRICS  ON E3

E.   D.   TYMCHATYN1   AND   B.   O.   FRIBERG

Abstract. If d is a strongly convex.metric on £3 and C is a

simple closed curve in E3 such that C is the union of three line seg-

ments then C is unknotted.

In a talk presented to a Topology Conference at Arizona State Uni-

versity in 1967, Joseph Martin asked the following question: If d is a

strongly convex metric on Euclidean 3-space E3 and C is a simple closed

curve in E3 that is the union of three line segments (with respect to the

metric d) is C unknotted ? The purpose of this note is to answer his question

in the affirmative.

A partially ordered space is a space X together with a partial order

^ on X such that ^ has a closed graph.

For x e X 'we let

L(x) = {y e X | y ^ x}   and    M(x) = {y e x | x r?g y}.

A chain is a totally ordered set. An order arc is a compact and connected

chain. An antichain is a set which contains no nondegenerate chain.

A set A is a maximal antichain of X if A is an antichain and for each

x e X, there exists ye A such that either x*£j» or y^x. An element

6 e X is called the zero (resp. identity) of X if d^x (resp. x^d) for each

xeX.

We shall need the following result which is a slight generalization of

Theorem 2.6 in [5].

Theorem 1. Let X be a compact metric partially ordered space such

that X has a zero and an identity and, for each x e X, L(x)\JM(x) is a

connected set. If A is a compact antichain in X then A is contained in a

compact maximal antichain of X.

Proof. Let A be a compact antichain in X which is neither the zero

nor the identity of X. Let Y be the quotient space obtained from X by
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identifying the set A to a point and let tt be the natural projection of X

onto Y.

Let ^' be the smallest partial order on Y that makes 7r an order pre-

serving function, i.e. for x e X let

Litrix)) = tt(L(x))    if A n L(x) = 0

= U {«'(¿O')) I y e A U {x}}    otherwise.

Then 2£' has a closed graph, T has a zero and an identity, and, for each

y e Y, L(y)UM(y) is connected. By [5, Theorem 2.6] there exists a

compact maximal antichain C of Y such that ir(A)<^C. Hence, 7r-1(C)

is a compact maximal antichain of X which contains A.

Lemma 2. Let B denote the closed unit ball with center at the origin 6

in E3. Let A be an arc in B such that, for each e with 0<e^l, A meets

the 2-sphere Se with center at the origin and radius e in exactly two points.

Then there is a homeomorphism h of B onto B such that h carries each Se

onto itself and h carries A onto a diameter of B.

Proof. Let A+ and A_ be the two half arcs determined by A, i.e.

A = A+'UA_, A+C\A_=d. Let -f*»:(0, lj-^S, be the map determined by

A+, i.e., (f>ie)=treiA+C\St), where 7r£: Se—>-Sx is the natural radial projection.

Since the orthogonal group 0(3) is a bundle over the 2-sphere Sx (see

[4, p. 33]), <j> lifts to a map <J>: (0, 1]^0(3). Setting

hi\St = K1°ms)\Slrl'>^t hx(6) = e,

defines a homeomorphism hx of B onto itself which takes A+ onto a

radius. Let R2 be the Euclidean plane. The complement of hx(A+) in B

is homeomorphic to (0, l]xR2 by a homeomorphism which carries Se

onto {e}xR2 for each e in (0, 1]. Let h2 be the homeomorphism of B

onto itself (fixed on hx(A_)) which, by translating each {e}xRi onto

itself according to hx(A_), takes hx(A_) onto the opposite radius. Now

h=h2 ° hx satisfies the conclusion of the lemma.

Theorem 3. Let ^ be a partial order with closed graph on E3 such that

0 is the zero of E3 and, for each x e E3, L(x) is an order arc. If A is a

simple closed curve in E3 such that A = AxOA2y)A3 where Ax and A2 are

order arcs, AXC\A2={6} and A3 is an antichain, then A is tame and un-

knotted.

Proof. Let p $ E3 and let S3=E3\J{p} be the one-point compacti-

fication of E3. Extend the partial order ^ on E3 to a partial order (which

we again denote by ^) with closed graph on S3 by making/» the largest

element of S3. Then S3 with this partial order satisfies the hypotheses of

Theorem 1.
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By Theorem 1 there is a compact maximal antichain C of S3 such that

A3<^ C. By the proof of Theorem 3 in [6] every compact maximal anti-

chain of E3—{0} is a tame 2-sphere and there is a homeomorphism /?

of L(C)=U {L(x)\xeC} onto the unit ball B with center at the origin

in E3 such that, for each e with 0<e^l, /^(SJ is a compact maximal

antichain of E3 where St is the sphere with center 0 and radius e in B.

Thus, for each i=l, 2 and for each e with 0<e^l, h~1(Se)C\Ai consists

of exactly one point.

By Lemma 2 there is a homeomorphism j of B onto itself such that,

for each e with 0<e^l, j(Se) = S,, and j(h(Ax)Uh(A2)) is a diameter of

B. Now, j(h(A)) is the union of a diameter j(h(Ax U/l2)) of 5 together

with an arc j(h(A3)) on the boundary of B. Thus, j(h(A)) is tame and

unknotted in 73 and hence A is tame and unknotted in E3.

A metric d for a topological space X is said to be strongly convex if

for each x, y e X there exists a unique zêI such that d(x, y)/2 = d(x, z)=

d(y, z).

A line segment in a metric space (X, d) is a set isometric to a segment

of the real line with its usual metric.

A metric d for a compact space X is strongly convex if and only if each

pair of points x and y of Xis contained in a unique minimal line segment

xy (see [2]).

Theorem 4. Let d be a strongly convex metric for E3. If C is a simple

closed curve in E3 such that C is the union of three line segments then C is

tame and unknotted.

Proof. Suppose C is composed of the three line segments ab, ac and

be Let 5Í be the partial order on E3 defined by setting x^y if and only

if xEay. Then (see [6]) ^ has a closed graph, zero a, and, for each

.v e E3, L(x) is an order arc.

By the proof of Theorem 3 it follows that ab\jac is a tame arc. Since

a was arbitrary, C is locally tame. By [1] C is tame.

Let S={x e E3\d(x, a)=l}. By the proof of Theorem 3, S is a

2-sphere and B=L(S) is a 3-cell. Rolfsen proved in [3] that, for each

x e B— {a}, M(x)(~^S is a proper subcontinuum of S which does not

separate S. We may suppose without loss of generality that C^B—S.

If x, y e be such that x<y then xy^bc. Let X be the quotient space

obtained from B by identifying each line segment xy^bc such that

x<y to a point. Let it be the natural projection of B onto X. Then A' is a

compact metric space. The partial order on B induces in a natural way a

partial order ^'onl such that <' has closed graph, zero a, set of maxi-

mal elements S; for each x e X—{a}, L(x) is a nondegenerate order arc,

and, for each xeX— {a}, {y e S\x^'y} is a proper subcontinuum of 5
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which does not separate S. By Theorem 5 in [6], A- is a 3-ceIl. Now,

7t(C) is a simple closed curve in X which satisfies the hypotheses of Theorem

3. Hence, 77(C) is tame and unknotted in X. Thus, the fundamental group

of X— tt(C) is infinite cyclic. Since n is a homeomorphism off of C, B—C

is homeomorphic to X— tt(C). In particular, the fundamental group

of B—C is infinite cyclic. Thus C is unknotted in B and hence in E3.
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