A PROBLEM OF MARTIN CONCERNING STRONGLY CONVEX METRICS ON E³

E. D. TYMCHATYN1 AND B. O. FRIBERG

ABSTRACT. If d is a strongly convex metric on E^3 and C is a simple closed curve in E^3 such that C is the union of three line segments then C is unknotted.

In a talk presented to a Topology Conference at Arizona State University in 1967, Joseph Martin asked the following question: If d is a strongly convex metric on Euclidean 3-space E^3 and C is a simple closed curve in E^3 that is the union of three line segments (with respect to the metric d) is C unknotted? The purpose of this note is to answer his question in the affirmative.

A partially ordered space is a space X together with a partial order \leq on X such that \leq has a closed graph.

For $x \in X$ we let

$$L(x) = \{ y \in X \mid y \le x \} \quad \text{and} \quad M(x) = \{ y \in x \mid x \le y \}.$$

A chain is a totally ordered set. An order arc is a compact and connected chain. An antichain is a set which contains no nondegenerate chain. A set A is a maximal antichain of X if A is an antichain and for each $x \in X$, there exists $y \in A$ such that either $x \le y$ or $y \le x$. An element $\theta \in X$ is called the zero (resp. identity) of X if $\theta \le x$ (resp. $x \le \theta$) for each $x \in X$.

We shall need the following result which is a slight generalization of Theorem 2.6 in [5].

THEOREM 1. Let X be a compact metric partially ordered space such that X has a zero and an identity and, for each $x \in X$, $L(x) \cup M(x)$ is a connected set. If A is a compact antichain in X then A is contained in a compact maximal antichain of X.

PROOF. Let A be a compact antichain in X which is neither the zero nor the identity of X. Let Y be the quotient space obtained from X by

Presented to the Society, January 15, 1974; received by the editors July 20, 1973. AMS (MOS) subject classifications (1970). Primary 54F05, 55A25.

¹ The first named author was supported in part by National Research Council Grant A5616.

[©] American Mathematical Society 1974

identifying the set A to a point and let π be the natural projection of X onto Y.

Let \leq' be the smallest partial order on Y that makes π an order preserving function, i.e. for $x \in X$ let

$$L(\pi(x)) = \pi(L(x))$$
 if $A \cap L(x) = \emptyset$
= $\bigcup \{\pi(L(y)) \mid y \in A \cup \{x\}\}$ otherwise.

Then \leq' has a closed graph, Y has a zero and an identity, and, for each $y \in Y$, $L(y) \cup M(y)$ is connected. By [5, Theorem 2.6] there exists a compact maximal antichain C of Y such that $\pi(A) \subseteq C$. Hence, $\pi^{-1}(C)$ is a compact maximal antichain of X which contains A.

Lemma 2. Let B denote the closed unit ball with center at the origin θ in E^3 . Let A be an arc in B such that, for each ε with $0 < \varepsilon \le 1$, A meets the 2-sphere S_ε with center at the origin and radius ε in exactly two points. Then there is a homeomorphism h of B onto B such that h carries each S_ε onto itself and h carries A onto a diameter of B.

PROOF. Let A_+ and A_- be the two half arcs determined by A, i.e. $A = A_+ \cup A_-$, $A_+ \cap A_- = \theta$. Let $\phi: (0, 1] \rightarrow S_1$ be the map determined by A_+ , i.e., $\phi(\varepsilon) = \pi_{\varepsilon}(A_+ \cap S_{\varepsilon})$, where $\pi_{\varepsilon}: S_{\varepsilon} \rightarrow S_1$ is the natural radial projection. Since the orthogonal group O(3) is a bundle over the 2-sphere S_1 (see [4, p. 33]), ϕ lifts to a map $\Phi: (0, 1] \rightarrow O(3)$. Setting

$$h_1\big|_{S_\varepsilon}=\pi_\varepsilon^{-1}\circ (\Phi(\varepsilon)\big|_{S_1})^{-1}\circ \pi_\varepsilon, \quad h_1(\theta)=\theta,$$

defines a homeomorphism h_1 of B onto itself which takes A_+ onto a radius. Let R^2 be the Euclidean plane. The complement of $h_1(A_+)$ in B is homeomorphic to $(0, 1] \times R^2$ by a homeomorphism which carries S_{ε} onto $\{\varepsilon\} \times R^2$ for each ε in (0, 1]. Let h_2 be the homeomorphism of B onto itself (fixed on $h_1(A_-)$) which, by translating each $\{\varepsilon\} \times R^2$ onto itself according to $h_1(A_-)$, takes $h_1(A_-)$ onto the opposite radius. Now $h = h_2 \circ h_1$ satisfies the conclusion of the lemma.

THEOREM 3. Let \leq be a partial order with closed graph on E^3 such that θ is the zero of E^3 and, for each $x \in E^3$, L(x) is an order arc. If A is a simple closed curve in E^3 such that $A = A_1 \cup A_2 \cup A_3$ where A_1 and A_2 are order arcs, $A_1 \cap A_2 = \{\theta\}$ and A_3 is an antichain, then A is tame and unknotted.

PROOF. Let $p \notin E^3$ and let $S^3 = E^3 \cup \{p\}$ be the one-point compactification of E^3 . Extend the partial order \leq on E^3 to a partial order (which we again denote by \leq) with closed graph on S^3 by making p the largest element of S^3 . Then S^3 with this partial order satisfies the hypotheses of Theorem 1.

By Theorem 1 there is a compact maximal antichain C of S^3 such that $A_3 \subset C$. By the proof of Theorem 3 in [6] every compact maximal antichain of $E^3 - \{\theta\}$ is a tame 2-sphere and there is a homeomorphism h of $L(C) = \bigcup \{L(x) | x \in C\}$ onto the unit ball B with center at the origin in E^3 such that, for each ε with $0 < \varepsilon \le 1$, $h^{-1}(S_{\varepsilon})$ is a compact maximal antichain of E^3 where S_{ε} is the sphere with center θ and radius ε in B. Thus, for each i=1, 2 and for each ε with $0 < \varepsilon \le 1$, $h^{-1}(S_{\varepsilon}) \cap A_i$ consists of exactly one point.

By Lemma 2 there is a homeomorphism j of B onto itself such that, for each ε with $0 < \varepsilon \le 1$, $j(S_{\varepsilon}) = S_{\varepsilon}$ and $j(h(A_1) \cup h(A_2))$ is a diameter of B. Now, j(h(A)) is the union of a diameter $j(h(A_1 \cup A_2))$ of B together with an arc $j(h(A_3))$ on the boundary of B. Thus, j(h(A)) is tame and unknotted in B and hence A is tame and unknotted in E^3 .

A metric d for a topological space X is said to be *strongly convex* if for each $x, y \in X$ there exists a unique $z \in X$ such that d(x, y)/2 = d(x, z) = d(y, z).

A line segment in a metric space (X, d) is a set isometric to a segment of the real line with its usual metric.

A metric d for a compact space X is strongly convex if and only if each pair of points x and y of X is contained in a unique minimal line segment xy (see [2]).

THEOREM 4. Let d be a strongly convex metric for E^3 . If C is a simple closed curve in E^3 such that C is the union of three line segments then C is tame and unknotted.

PROOF. Suppose C is composed of the three line segments ab, ac and bc. Let \leq be the partial order on E^3 defined by setting $x \leq y$ if and only if $x \in ay$. Then (see [6]) \leq has a closed graph, zero a, and, for each $x \in E^3$, L(x) is an order arc.

By the proof of Theorem 3 it follows that $ab \cup ac$ is a tame arc. Since a was arbitrary, C is locally tame. By [1] C is tame.

Let $S = \{x \in E^3 | d(x, a) = 1\}$. By the proof of Theorem 3, S is a 2-sphere and B = L(S) is a 3-cell. Rolfsen proved in [3] that, for each $x \in B - \{a\}$, $M(x) \cap S$ is a proper subcontinuum of S which does not separate S. We may suppose without loss of generality that $C \subseteq B - S$.

If $x, y \in bc$ such that x < y then $xy \subset bc$. Let X be the quotient space obtained from B by identifying each line segment $xy \subset bc$ such that x < y to a point. Let π be the natural projection of B onto X. Then X is a compact metric space. The partial order on B induces in a natural way a partial order \leq' on X such that \leq' has closed graph, zero a, set of maximal elements S; for each $x \in X - \{a\}$, L(x) is a nondegenerate order arc, and, for each $x \in X - \{a\}$, $\{y \in S | x \leq' y\}$ is a proper subcontinuum of S

which does not separate S. By Theorem 5 in [6], X is a 3-cell. Now, $\pi(C)$ is a simple closed curve in X which satisfies the hypotheses of Theorem 3. Hence, $\pi(C)$ is tame and unknotted in X. Thus, the fundamental group of $X-\pi(C)$ is infinite cyclic. Since π is a homeomorphism off of C, B-C is homeomorphic to $X-\pi(C)$. In particular, the fundamental group of B-C is infinite cyclic. Thus C is unknotted in B and hence in E^3 .

REFERENCES

- 1. R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 15, 816.
- 2. Joseph Martin, Recent developments in the geometry of continuous curves, Topology Conference Arizona State University 1967, edited by E. E. Grace, Tempe, Arizona.
- 3. D. Rolfsen, Strongly convex metrics in cells, Bull. Amer. Math. Soc. 74 (1968), 171-175. MR 37 #2180.
- 4. N. Steenrod, *The topology of fibre bundles*, Princeton Math. Series, vol. 14, Princeton Univ. Press, Princeton, N.J., 1951. MR 12, 522.
- 5. E. D. Tymchatyn, Antichains and products in partially ordered spaces, Trans. Amer. Math. Soc. 146 (1969), 511-520. MR 41 #7642.
- 6. ——, Some order theoretic characterizations of the 3-cell, Colloq. Math. 24 (1972), 195-203.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SASKATCHEWAN, SASKATOON, CANADA