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INFORMATION FLOW IN  ONE-DIMENSIONAL
MARKOV  SYSTEMS1

D.  A.  DAWSON

Abstract. The information flow in discrete Markov systems

provides a method for determining that such a system has a

unique invariant measure. Estimates are obtained for the infor-

mation flow and conditions under which there is a unique invariant

measure for a one-dimensional Markov system are obtained.

1. Introduction. Markov chains on the infinite product of discrete

spaces have been introduced by O. N. Stavskaya and I. I. Pyatetskii-

Shapiro [4] to model certain parts of the central nervous system. One of

the main problems in the study of such systems is the determination

of the invariant probability measures. The concept of information flow

in such a system has been introduced by the author in [2] and its relation-

ship with the uniqueness of the invariant measure has been demonstrated.

2. Terminology. Let A be a countable set, S a finite set and V=SA.

T will serve as the state space for the class of Markov chains to be dis-

cussed. Let 'S be the cr-algebra of subsets of F generated by the coordinate

functions and for B<^A, let (SB be the o*-algebra generated by the coordin-

ate functions in B. A mapping F:r®í^—»[O, 1] is a probability transition

kernel if for each y e V, F(y,-) is a probability measure on 'S and for

every G e'S, Pi-, G) is a ^-measurable function.

For each a e A, let A(a) be a finite subset of A whose elements are

called the nearest neighbours of a. The kernel P(-, ■) is said to be

synchronous if for every finite subset B<= A and xx e S, a 6 B,

(2.1) P(y, {y:y(a) = x„ * e B}) = fl P(y, {V'Vi*) = *.}),

and local if for each fixed a and xa e S, P(-, {y:y(oC)=xx}) is measurable

with respect to SSM and hence

(2.2) Piy, {y.yioL) = xx}) = q,inNMy, x.)
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where qx(- ; •) is a probability transition function from SNM to 5 and ttnm

is the projection from T to SNU).

Let ÇÏ=FZ+ where Z+ = {1, 2, 3, • ■ •}, let & denote the product

tj-algebra of subsets of Q. and for «=1, 2, 3, • • ■ , let Xn(co) denote the

«th coordinate of co. Given an initial measure m on T and the kernel

P(-, •) we can construct a measure Pm on (Q., !F) such that {Xn} forms a

Markov chain with transition probabilities given by P(-, ■).

Consider finite subalgebras !FX, !F2, ¿F3 and J-*"4 of J5" and let ¿-/(J^)

denote the set of atoms of J-7,-. The entropy of J% is defined by

(2.3) /(J%.) = -     2   Pm(A)\ogiPmiA))

where all logarithms are taken to base two. The conditional entropy in

!FX given !F2 is defined by

(2.4) /(JS \&2) = -    2       2   ^ n ^-og^«.^ Iß))-

The mutual information in the algebras J"7, and J^2 is defined by

(2.5) =/(^)-/(^ I J^2)

=     2 2    P™^ n ß)log[p™(^ n B)IPmiA)PmiB)]

and the mutual information in &x, ¡F2 and$Fz is defined by

(2.6) IiSFx A^A JS) = /(¿Fx A^i) - /(.F, A&21 J^).

Note that I(ßrxA.ßr2)=I(&'2fs&rx) and /(J^aJ^aJ^) is symmetric in

z',y, A: (refer to N. Abramson [1]).

We also define conditional mutual information as follows :

/(JS A &21JS) s /(JS I J%) - I(^i I &2 v ̂ 3)

„- =2 '.(o 2     2 p-c^rt»[ó

■ loglPmiA O B I Q/PmC4 I C)PmiB I C)]

= Ii&x A ¿F2 | J^4) - /(JS A ¿F2 | J% V J%)

where J^vi5";, denotes the smallest algebra containing both J-*"2 and ^"3.

Note that /(J^A^^O and /(J¡r1AJ2r2|J¡r3)^0 but that

/( J^ A #"2 A J^)       and       IiSFx K&2k&*\ J^4)

can either be positive or negative.
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Now let ü' = {0, 1}®£2, let X0ico') denote the first coordinate of m

and let Jr0 = cr(A'0). Given a probability ip, l—p) on {0, 1} and two

measures m0 and mx on (r, 'S) we can construct a measure P on

(Í}', J-v^J-7) such that {Xn} is a Markov chain with

P(X0 = 0) = r»

and

F(AT, eG\X0 = 0) = m0(G),       P^ e G | X0 = 1) = mxiG)

and such that A^, X2, X3, • • ■ is a time homogeneous Markov chain with

transition probabilities given by the kernel P(-, •).

Given J^A, let ^} = a{Xn,x:aeJ} where for coeCl', n^l, oleA,

Xn¡a¡ is defined to be the a-coordinate of Xnico) e SA. For fixed a, consider

«^•(a) as the input and ¿F2a) as the output of a communications channel.

The transmission coefficient of the channel is defined to be

(2.9) p(a) = Sup /(J% A flùlKT, A J^((t))

where the supremum is taken over all choices ofp, m0 and mx. Because of

the Markov property /(^0A^r{2a}|^A'<a>) = 0 and therefore

ii&0 a J^«)) = W A ̂ <«) A *\à

= /(J% A ̂ w) - l{*% A J^, | &%i).

Since /(^oA^^il^^O,

i(^A^)</(^A^w)

and hence p(a)^l. We call the system strictly stochastic if p(a)<l.

It has been shown in [1] that the transmission coefficient for the binary

symmetric channel is strictly less than one and it is reasonable to conjecture

that p<l for a large class of channels. The concept of transmission coef-

ficient was first considered by A. Renyi in some of his unpublished work.

3. Information flow in Markov systems. Consider a local synchronous

Markov system with p(a)^/»<l for all ct. e A. Let Jr={a0, • • • , am}

be a finite subset of A. Then

/(JF}+1 A J^0) = Í^Ja^) + ¡(ftf A ̂ o | &£))

+ --- + w:> A^0|^c...a„_1}).

Lemma 3.1. Let B1={ol1, ■ ■ ■ , ar} and B2={ßx,---,ßk) be finite

ipossibly empty) subsets of A, a0 £ A, a0 <£ Bx and n^.1. Then

(3.1)    H&0 A ¿F&,11 *3J* V J^2) ^ pi(Jf0 A ̂ (ao) | &%? V ¿^,)
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where we adopt the convention that

/(¿F0 A SFB | &»? V !Fl\ = I(^0 A FB I ̂ t1)    ifB2=0

= I(^0 A J^) ifBx = B2=0.

Proof. Given r,o e S, xa e S, cc e Bx, yßeS, jSe^u^s) and

y'e{0, 1}, it can be verified by a straightforward calculation involving

Equations (2.1) and (2.2) that

P(-*7i+l.oto = X<*0 I -*0 = It -*n+l,oc = X«J

(3.2) aLeB1;Xn.ß = yf,ßeBt\JNix0))

= <i*„(yf, ß e Nic^y, xt0).

This implies that conditioned on ^^u^t ^{^ >s independent of

•^Bi    V •^B2-V(«o) V -^0-

In view of (2.7) it suffices to show that

•Wtf A ̂ 01 Xn+i.. = xx,*eBx; Xn.„ = y„, ß e B2)

^ p(a0)/(^(ao) A .F0 I X„+1,a = x„«eßi; *„,, = y„, ß e B2).

But (3.2) demonstrates that even conditioned on the event

{Xn+i,* = x«t a e Fi; ATBp/) = yß, ß E B2],

the channel from ^vu,,» t0 ^1^ is defined by gao(- ; •) and hence is iden-

tical to the channel from ^n^) to¡F2a¡¡}. If we then consider the definition

(2.9) of p((x0) with the roles of m0 and mx in that definition being played

by

PiXn e ■ I Xn+XiX = x„ a e Bx; Xn,ß = y„, ß e B2; X0 = /),       j = 0, 1,

then (3.3) follows and the proof is complete.

For future use we now derive some basic inequalities.

=/(^0A^(ar)) - /(j.a^a^:,1..,^)

(3.4) = /(J% A**M) - Ii^0 A3FZ)...,„_l})

+ I(^o^U.--..r-^N^y

But

I(¿F0 A ̂ {"o.. ..,«,_!) I &m*A V -^"(A-laolW • • -UA'(ar-i))) =  0
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and therefore

n-y-o A^-{ä0r...itrr_l} \^N(Xr))

(3-5) =  K^O A -^"{"o.- • -.otr-l) A ̂ (A'lctolU- • -l.» jVdr-l))  I -^Â*!»,))

= !(•>*■ 0 A^**>(A-(s,0)U---UA'{ar-l))  I ■--* A*(«r))*

Therefore from (3.4) and (3.5),

^ 1(^0 A ^""a-(«o)u ■ • ■ «-»Mar») — -r('^r0 A ^"{"o,- • -.ar-!))-

In the remainder of this section we restrict our attention to the case in

which A=Zl, the set of integers. For simplicity we assume that the local

transition probabilities are the same at each site and we restrict our

attention to measures m0 and mx which are invariant under the spatial shift

on A. Under this assumption but without assuming that m0 and mx are

invariant under reflections we have the following result.

Lemma 3.2. If ma and mx are invariant under the spatial shift on Z1,

then

{«1.

Proof.

= li^lt-r.- ••.««-1Î A ̂ o) + O^fem.-••,«*»+*} A^O I •^'b-r,- •-.«»-*>)

and

/(^l_,..,,m+r}A^o)

Hence the result follows since by spatial invariance

We now assume that for each ar, A/(ar)-={ar_s, * • • , a^,, ar, ar+1, • • • ,

ar+s}. For k=0, I, 2, ■ • ■ , let

Fn(/c) = /(J^0AJ^,0,..,M}).

A measure m is a stationary probability for the Markov system if, for

Ge'S, miG)=lPiy, G)midy).
We now calculate the amount of information about the initial state

which is contained in a finite subsystem at the nth epoch.
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Proposition 3.1.    Let m0 and mx be two distinct spatially invariant

probability measures. Then

Fn+i(k) ̂  pFnik + 2s) + pil - p)Fnik + 2s - 1) + ■ ■ ■ + P(l - p)kFn(2s).

Proof.    By Lemma 3.1 we have

Pn+1(0) = pl(^lm A ̂ o) = PPn(2s)

since N(0) = {—s, ■ ■ ■ , 0, ■ ■ ■ , s} and we have assumed spatial invariance.

Similarly, for k^.1, Lemma 3.1 and (3.6) imply that

Fn+i(k) - Fn+X(k - 1) = /(J% A^t11 .FSF..>M))

= pli^o A^(.V(0)U- ■ -Uf-Ii))) ~ '(•^oA^'di.-.H))]'

Hence since A/(0)u- • -\JN(k) = {—s, • • • , 0, • • • , s+k),

(3.7) Fn+Xik) - Fn+Xik -l) = p[Fn(k + 2s) - Fn+Xik - 1)].

But Equation (3.7) can be rewritten as

(3.8) Fn+Xik) ̂  pF^k + 2s) + (1 - p)Fn+xik - 1).

Then, by induction

Fn+AQ = pFnik + 2s) + pil - p)Fnik + 2s -1)+ • • '+ /Kl - P?Fni2s).

Using the ideas of Proposition 3.1 we now obtain a stronger inequality

for the information flow.

Proposition 3.2.

(3.9) Fn+1ik) ̂  pHnik) + pil - p)Hnik - 1) + ■ • • + p(l - pfHniO)

where

(3.10)

Hn(k) = (l-p)k+1Fn(2s)

+ [pil - p)kFn(2s) + pil - pf-1Fn(2s + 1) + • • • + pF„(2s + k)}.

Proof.    From Lemma 3.1 and (3.4) we have for k^.1,

(3.11)

Fn+i(k) - Fn+X(k - l)=I(^kyA¿F0\^fc\.,k_x))

^ Plli^0^nmk)) -l(^0A^...k-i}) + l(SF***X..*rû\*îm)]

For r = 0, 1, 2, •• -, let

Gn+Xir) = li&i A &£...* I ̂ Wi-).
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Then

(3.12) Fn+Xik) -g (1 - P)Fn+x(k - 1) + PlFn(2s) + Gn+X(k - 1)].

By Lemma 3.2

G„+1(0) = /(jr0 A J^1 | J^(1)) = /(<Fo A #r«+t | ^,(o)).

But by Lemma 3.1,

/(J^o A J^i)    | ̂ (,)) *^ p/^o A ̂ N(i) I ̂ Nio))

= PÍFni2s+l)--Fni2s))

and, hence,

(3.13) GB+1(0) ̂  p(FM(2s + 1) - Fni2s)).

Forr^l,

G^iir) - Gn+Xir - 1)

— l\<r0 A^i0 ...,r} | ¿r Mr+l)) ~ '(.^0 A -^ {0.---.1--1Î | ^ NW))

= f(^"o A^(9,...,r} l-^JWrH)) -/(^oA^j!...^!^,^,))

= 1(^0 A ̂ {"oí    I ̂ Vlr+l) V ̂ "{l.- • -,r})-

But Lemma 3.1 implies that

(3.14) Gn+Xir) - Gn+Xir - 1) ^ p/(J^ A J^(0) | ^(r+1) V &£*...,)).

But following the method of derivation of Equations (3.4) and (3.5),

i(,y0 A^a-10) |^jV(r+l) V-^ {1,-■■.«•>)

= /(J*7,) A ^"^(o) | -^NW+l)) — 1(^0 A ^N(o) A ^ {l.",r} | ^Mr+ll)

= I(^ro A ̂ jv(O) I ̂ NW+1))

+ Ifß'a A #"{!,...,,} l^NW+l) W -^NiO)) — 1(^0 A^ji.-.-.r} l-^NW+l))

=^ 1(^0 A ̂ "jvtO) | -^Jlr+l))

+ I(-^"o A ^ (A*(i)u- ■  UjVIr)) | ^ NW+1) V «^A-fO)) ~~ ^n+l(r ~  1)

= /(^o A ^"(A'tOJW- ■ -Ufflrll | S NW+1)) — GB+1(r —  1)

= Fnir + 2s + 1) - F„(2s) - Gn+1(f - 1).

Therefore combining the last result with (3.14), we have

(3.15) Gn+Xir) < (1 - P)Gn+xir - I) + p(F„(r + 2s + 1) - Fn(2s)).

Hence by induction

(3 16) G"+l(r) = p(Fn(2s + r+1)~ F^2s))

+ --. + pil-pYiFni2s+l)-Fni2s)).
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But then, from (3.12), we have for k^.1

F„+m = (1 - p)Fn+x(k - 1)

(3.17) + plFn(2s) + P(Fn(2s + k) - Fn(2s))

+ ■ ■ ■ + pil - pf-\Fni2s + 1) - F„(2s))].

Hence Fn+1(0)^PFn(25) and for fc£ 1,

(3.18) Fn+Xik) Ú (1 - P)Fn+i(k - 1) + pH,fk)

where

H„ik) = lpFn(2s + k) + ••• + pil - pf-lFn{2s + 1) + pil - P)kFni2s)]

+ (l-pT"+1F„(2s).

Using induction and (3.18) it can be shown that, for k^.0,

Fn+i(k) = pH„ik) + pil - p)H„ik -D+--- + pil- p)kHni0y

Corollary. // Lx(k) = Fx(k) for each k^.0 and if Ln(k) is defined

recursively by Ln+X(0) = pLn(2s), and, for k^. 1,

Ln+X(k) = (1 - p)Ln+1(k - 1)

(3.19) + p[(l - p)k+1Ln(2s)

+ {pil - pfLH(2s) +■■■ + PLn(2s + fc)}]

then for all n and k, Fn(k)^Ln(k).

Proof.   The proof follows by induction from equation (3.17).

Proposition 3.3. Consider a one-dimensional synchronous Markov

system with N(u.k) = {v.k_s, ■ ■ ■ , «„, ■ • • , xk+s\. If p<lfis+l), then for

each k

Fnik) = /(jf0 a j-T,.; ••:„)) - o ««-co.

Proof. In view of the corollary to Proposition 3.2 it suffices to show

that, for each k, Lnik)->-0 as n—>-co. Since lim^^ Lxik)^l and the recur-

sive equations (3.19) are linear we can assume without loss of generality

that lirrij.^3. L1(rV)=l so that L,(-) can be identified with the cumulative

distribution function of a discrete random variable Wx. Let Yx, Y2, Y3, • • ■,

and Zx, Z2, Z3, • ■ • , be two sequences of independent discrete random

variables with distribution given by P(Yx=k) = p(l—p)k for k=0, 1,

2, • • • 8, and define the sequence of random variables {rFn} as follows:

Wx is defined as above; if Wn = 2s, then Wn+x=Yn; if Wn=k>2s,

then Wn+x—k — 2s+ Y„+Zn. In other words,

W-,+1 = Xuv„i2s)Yn + X{w„>2S)('Vn -2s + Yn + Zn),
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where %a denotes the indicator function of the event G. Now it is clear

that {Wn} is a Markov chain with state space {0, 1, 2, ■ • ■}. Let E„(k) =

P(Wn^k). Then

P{Wn+x = k) = P(Wn ^ 2s)P(Yn ^ k)
2s+k

+ 2   P(2s<Wn^l)P(Yn + Zn = k + 2s-l).
■=2»+l

Therefore

En+x(k) = p2(l-p)iEn(2s)
»=o

2s+k

+ 2   (£»(0 - En(2s))p2(k + 2s-l+ 1X1 - pf+2s-',
l=2s+l

since P(Yn+Zn=r) = p2(r+l)(l-Py for r=0, 1,2, ••• . But then

Fn+X(k) - (1 - p)En+x(k - 1)

= pFn(2s) + p2((F„(2s + k) - EJ2s))

+ ■ ■ ■ + (1 - p)*-1(£n(25 + 1) - £n(2s))).

Therefore Enik) satisfies (3.19) and hence Enik) = Lnik) for all n and k.

This means that the Markov chain {Wn} with state space {0, 1, 2, • ■ ■}

has no absorbing states and, as long as Wn e {2s+l, 2i+2, • • •}, it is

identical to a random walk. But according to a basic result of renewal

theory (refer to W. Feller [3, Chapter 2]),

PiWn=k)-+0 as /t->-oo for all k if and only if

EiYn + Zn- 2s) = 2(1 - p)lp - 2s ^ 0.

Therefore Ln(rc)->-0 for all k as «-»-co if and only if p=l/is+l) and the

proof is complete.

Now let p be any spatially invariant initial measure for the Markov

system and let

PÀG) mj. P(Xn eG\X0 = y)pidy).

Proposition 3.4. Under the above assumptions, the Markov system has

a unique spatially invariant stationary measure if p^l/is+l). Moreover

for any finite set B^ A and any spatially invariant measure v,

Vnl&B^Pool&B      aSn

where p^ is the spatially invariant stationary measure.

Proof.   It has been shown in [2, Proposition 3.1 ] that at least one such

stationary measure pœ exists. Now let v be another such stationary
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measure. Applying Proposition 3.3 in the case mx=px and m2 = v with the

probability (i, £) on 3FÜ it follows that, for any finite set B, /(J^aJ^)

—»-0 as «—*oo. But since pn=px and vn = v this implies that

7(Jr0AJ¿7¿) = 0 and hence J*7,, and J*7]} are independent (cf. N. Abramson

[1, p. 107]). But this implies that v\SB=px\9 for every finite set B

which in turn implies that v=px.

Finally, let v be any spatially invariant measure. Applying Proposition

(3.3) in the case mx=pm and m2 = v with the probability (\, i) on J-7,,,

it follows that, for any finite set B<^A,

(3.20) /(J% A ̂ B) -* 0   as n -v oo.

But

(3.21) /(J% A J-*"») = Hikpx + \vn) - iHipJ - iHivn)

where H(p)= — ̂ 2,pilogpi and on the right-hand side of (3.21) we are

considering the restrictions of the measures to 'Sß. But H(\px+\v) —

\H(px)—\H(v)=0 if and only if v=pœ, and H(v) is continuous as a

function of v. Hence (3.20) implies that vn\9 —*-//,„ |,y  as «^*°°-
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