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PRIME QUADRATICS ASSOCIATED WITH COMPLEX
QUADRATIC FIELDS OF CLASS NUMBER TWO

M. D. HENDY

ABSTRACT. We establish a necessary and sufficient relation
between those quadratic fields of class number two, and some
quadratic polynomials f(x) which take only prime values for small
positive integers.

Euler discovered that for certain primes g, namely g=2, 3, 5, 11, 17, 41,
the quadratic

1) fX)=x*+x+4¢

takes only prime values for integers in the interval 0=Sx=g—2. (Cf. [1].)
In fact it is known that a prime q is such a value if and only if the complex
quadratic field Q(,/(1 —4¢)) has class number one. This test readily
gives rise to all the fields Q(,/—d) with d=7, which have class number
one. In a similar manner we discover a quadratic similar to (1) related to
each of the complex quadratic fields of class number two.

Let d be any squarefree positive integer, and & be the class number
of the field Q(,/—d). This field has discriminant D=—d when
d=3 (mod 4), or D= —4d otherwise. From the theory of genera of com-
plex quadratic fields, we note that the class group of Q(,/ —d) will contain
one factor of order a power of two if and only if D has precisely two dis-
tinct prime factors. Hence & can only be two for fields Q(,/ —d) of one of
the following three types:

I. d=2p, p odd prime, D= —8p.
II. d=p=1 (mod 4), p prime, D=—4p.

III. d=pg=3 (mod 4), p, g prime, D= —pq.

For fields of Type III, we will assume that p<q. For each field we associate
a quadratic f(x) similar to (1). For fields of Type I,

2 f(x) = 2x* + p.
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For fields of Type II,
3 fx) =2x*+2x 4+ (p + 1)/2.
For fields of Type III,
©) f() = px* + px + (p + 9)/4.

THEOREM. A complex qua ratic field of Type 1, 11 or IlI has class
number h=2 if and only if the corresponding quadratic f(x) takes only
prime values for integers x in the interval 0=x<k, where k=./(p[2)
Sor fields of Type 1, k=(,/p—1)/2 for fields of Type 11, and k=./ (pq/12)—%
Sor fields of Type III.

ProoF. The proof is established via the following lemmas.

LeMMA 1. If x is the least positive integer for which f(x)=2x*+p of
(2) is composite, then x<(p—1)/\/2=>x</(p/2).

PRrROOF. f(p) is composite, so a minimal positive integer x for which
f(x) is composite does exist. Set Ly=(p—1)/\/2, L=,/(p/2) and
L,=\/(L§2~"+(2"—1)p2-"-1), and suppose x<L,. We find, for n=0,

(5) L < Ln+1 < Ln é L09

(6) L =IlimL, and
n— oo

Q) L, = 3/QL7: + p).

Suppose, for some n=0, x<L,. As f(x) is composite let a be its least
prime divisor. Thus

@B a@=f(x)<2L}+p=2Li+p=(p—-1D*+p<p?

and, in particular,

©) a<{QL,+p)<p
Thus f(y)=a has no real roots. Now
(109 f(x — al) = f(x) = 0 (mod a),

so that f(|x—al) also has a as a proper divisor, and hence is composite.
f(0)=p, so x#a, and as x is minimal x<|x—a], i.e.,

11 xS a2<3/(Ly+p) = Loy

Thus by induction x < Ly=>x< L, for eachn=0, and so x=lim,_,, L,=
L. Equality cannot hold as L is irrational, so x < L establishing the lemma.
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LeMMA 2. If x is the least positive integer for which f(x)=2x2+2x+
(p+1))2 of (3) is composite, then x<(p—+/2)[2\/2=>x<(\/p—1)/2.
ProOF. We use the same procedure as above in Lemma 1, with
L=(/p—1)/2, Ly=(p—+/2)/2,/2 and
L, =L+ 2"+ Q"—1)p27?) — L.

In equation (10) we replace f(x—a)=f(a—x)=f(x)=0 (mod a) with
fx—a)=fla—x—1)=f(x)=0 (mod @), so for x minimal, x<a and
x<a—x—1. The remainder of the proof then follows.

Unfortunately a corresponding result for f(x)=px*+px+(p+q)/4
of (4) does not exist for p>3. For fields of Types I and II set a=2 and
for fields of Type III set a=p. Let A be the ambiguous ideal with N(4)=a.
This meaning of the letter a has nothing to do with its use in Lemmas 1
and 2. From now on a will have the meaning specified here.

LemMMA 3. If h>2, then there exist nonprincipal ideals B, C with the
following properties:

1. B and C are neither principal nor in the same class as A.

2. ABC is principal.

3. B is a prime ideal.

4. 1<N(B), N(C)<\/(—D/3).

5. AfBC.

ProOOF. As N(4A)<—D|4, A cannot be principal. Let K, be the class
of principal ideals and K, the class containing 4. As #>2 and K;=K;,
{K, K,} is a proper subgroup of the class group. Hence there exist other
classes, and atleast one of them, say K3, has a prime ideal B as its member
of least norm. As Kj is distinct from K;, K,, so too is K,=K,K; . Let C
be an ideal of least norm of K,, so that ABC € K,K,K,=K3=K, is a
principal ideal.

We have an upper bound (see [1, p. 141]) on the size of the least
(according to norm) ideal of any equivalence class K;. That is, in each
class K; over Q(;/—d) there exists an ideal 4,, with N(4,)<\/(—D/3).
Hence B, C are ideals satisfying properties 1, 2, 3 and 4.

Further 4|BC=>4|C as B is prime, so that there would need to exist
an ideal E, with C=AE. This would mean BE~A2BE=ABC, so BE
is principal; however, as N(E)<N(C)/2<}./(—D/3), N(B)<./(—D/3),
and N(BE)< — D/6 it could not be principal. Hence A,I’BC.

LEMMA 4. In the fields of Type 1, h>2=>f(x) is composite for some
integer x in the interval 0=x<./(p/2).

PrOOF. N(A)=2. From Lemma 3, there exist ideals B, C with prop-
erties 1 to 5. Set b=N(B), c=N(C). As ABC is principal there exist
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integers y, z satisfying

(12) N(ABC) = 2bc = y* 4 2p2t.
Thus 2|y. Let y=2x, so that (12) gives

(13) bc = 2x® + pz2.

A}BC, 50 2}bc and z is odd. Further

(14) bc = N(BC) < —D/3 = 8p/3 < 4p,
so, from (14), z2=1, and (13) becomes

(15) bc = 2x® + p = f(x).

From (15), x*=(bc—p)/2<5p[6, so, for p>3, x<./(5p/6)<(p—1)//2.
Further for p=3, as x is integral x<./(5/2)=>x=1<./2=(p—1)//2.
Hence

(16) x <(p —D/J2,
so, by Lemma 1, f(x) is composite for some integer x in the interval
0=x<V(p/2).

LemMA 5. In fields of Type II, h>2=>f(x) is composite for some
integer x in the interval 0=x<(\/p—1)/2.

Proor. As above we can find b=N(B), c=N(C) and integers y, z
so that

a7 N(ABC) = 2bc = y* + pz2.

From Lemma 3, 2}bc, so

(18) 2bc = 2 = y* + 2% (mod 4),

and hence both y and z are odd. Putting y=2x+1 we obtain
(19) be = 2x% + 2x + (1 + pz¥)/2,

and further

(20) bc = N(BC) < —D|3 =4p[3 < 2p.

Thus z2=1, and (19) becomes

Q1) be =2x* 4+ 2x + (p + 1)/2 = f(x).

Also, from (20), 2x24+2x+(p+1)/2<4p/3, so (x+3)*<Sp[12=p*/12=
P?/8 (as p=5). Hence

(22) 0= x<(p—22J2
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However, from Lemma 2, f(x) is composite for some integer x in the in-
terval 0=Sx<(\/p—1)/2.

LEMMA 6. In the fields of Type III, h>2=>f(x) is composite for some
integer x in the interval 0=x<./(— D/[12)—4}.

ProoF. We may assume pg>16, since Q(,/—pg) has class number
greater than two. N(4)=p. As above we can find b=N(B), c=N(C) and
integers y, z, y=z (mod 2) so that

(23) N(ABC) = pbc = (y* + pqz?)/4,
ie.,
24) 4pbc = y* + pqz*.

If b=2, then (2|pg)=1, so pg=7 (mod 8), and hence p+4=0 (mod 8).
Thus, since pg>16, we find that f(0)=(p+q)/4 is properly divisible by 2
and hence composite.

For b>2, from (24), p|y, so let y=pv, so that (24) becomes

(25) 4bc = pv® + g22.

As AYBC, pkbc, and hence z5%0. Also if v=0, then g|bc. However b,
c</(pq/3)<q so ¢}b, ¢ and as g is prime gfbc. Hence v#0. b, p are
primes, (b, p)=1, so b|z=>bv, so, from (25),
blz=>4c>(p+q9b>2(p+9q
=4ct > p*+q* + 2pg > 2pq
= ¢ > /(pq[2).

However as ¢<./(pq/3), b*z. Thus z#£0 (mod b), so there exists an inverse
z' of z (mod b). From (25) we obtain

26) pz')? + g = 0 (mod b).

Let w be the least positive residue (mod b) of vz’. As b is odd, one of
w, b—w is odd, so let u be that value and hence 0<u<b. From (26),
put+g=0 (mod b) while also pu®+g=p+4g=0 (mod 4), so

27) pu* + g = 0 (mod 4b).

Since ABC is principal, and C not principal, neither is 4B. Thus pu®+g#
4b, for otherwise 4bp=(pu)*+pq, and AB=((put./—pg)/2). Thus b
is a nontrivial divisor of (pu®+q)/4. As u is odd, let u=2x+1 so that

(28) (pu* + 9)/4 = f(x)
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which has a proper prime divisor b, so is composite. Now
(29) 0<x=(—12<b2—}<(pg/12) - ;

so again the lemma holds true.
This now establishes the first half of the theorem. The remainder
is established in a final lemma.

LemMmA 7. For each field of Type 1, 11 or 111, if f(x) is composite for
some integer x in the interval 0=x<k, then h>2.

PrROOF. Suppose f(x) is composite with 0=x<k, so that f(x)=bc,
with b, ¢>1, integral and b prime. Now with a as chosen before Lemma 3,
f(x) =bc=abc= (2x)* +d for fields of Type I,
(30) =2x+ 1)*+d for fields of Type II,
= ((2x + 1)*p? + d)/4 for fields of Type III.
For fields of Type I, x#0, as f(0)=p is prime, so we find that for all
fields (bc, d)=1. Hence, from (30), (—d|r)=1 for all primes r dividing
be.

Let « be the algebraic integer 2x+./(—d), (2x+1)+./(—d), or
(2x+1)p+/(—d))/2 in the fields of Types I, II and III respectively.
Hence, in all fields of Type I, x<\/ (p/2)=>N(x)=(2x)*+2p<4p, i.c.,
(3D N(x) < 2d.

Similarly, in fields of Type II, x<(/p—1)[2=N(x)=02x+1)*+p<
2p=2d,ie.,

32) N(o) < 2d.

For fields of Type III, x<./(pq/12)—3}=>((2x+1)%p*+pq)/4< p*q[12+
pql4<p*q*(1/12+41/60), i.e.,

(33) N(x) < d2/10.

Using these three inequalities we now prove that the algebraic integer «
has no nontrivial factorisation. As the coefficient of \/(—d) in « is 1,

« cannot be divisible by any nontrivial rational integer. Suppose « does
have a nontrivial factorisation in algebraic integers,

(34) «=py

where for D=0 (mod 4), f=b,+by/(—d), y=c;+cp/(—d), and for
D=1 (mod 4), 13=(b1+b2\/(_d))/2, 7=(Cl+02\/(—d))/2’ with b=
b, (mod 2), ¢;=c, (mod 2).

If b,=0, § would be a rational integer, hence f=41. Similarly
¢;=0=-y=41. Hence for a nontrivial factorisation (34) we require
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by, c;#0. For D=0 (mod 4), N(«x)=N(B)N(y)=(bi+db3)(ci+dc)=d?,
which contradicts equations (31) and (32). For D=1 (mod 4),
N(x) = (b] + db3) - (¢} + dcy)[16
= (bic} + d(bic; + bjcl) + d*bicy)/16.
However as N(«) <d?/10 by equation (33), we must have bjc;=1, bic} <d*.

Thus, for fields of Types I or II, « can have no nontrivial factorisation
(34), and, for fields of Type III, it can only be of the form

o= (2x + lp + /(=d))2
= ((b1 + b/ (=d))[2) - ((e1 + €2/ (—))/2),

with byc,==1, and |b,c,|<d=pgq. By equating real and imaginary
parts in equation (35) we find

(3%

(36) 2(2x + 1)p = byey — bacyd = byic; — bycypyq,
and
(37) 2 = b102 + bzcl.

As 2(2x+1)p>0, |bicil<pg, and |bycy|=1, then byc,=—1 for (36) to
hold. Suppose b,=1, ¢,=—1; then, by equation (37), ¢;=b;+2, and
equation (36) becomes

(38) 22x + 1)p = by(b, + 2) + pg.

Hence p|b, or p|b,+2, so p=min(|b,|, |b;+2|). b, —1, so b,(b,+2)20,
and p(p—2)=b,(b,+2). Thus it follows from equation (38) that

39 x+2zp+q-—2

and, on squaring,

(40) 42x+ 12 Zp2+ g2+ 2pg —4p — 49 + 4.
However as p=3, 425, p*+42>4p+49—4, so

@41 4(2x + 1) > 2pq.

Also x<./(pq/12)—3% so 4(2x+1)*<4pg/3. This contradicts equation
(41), so we cannot have a factorisation with b,=1, c,=—1. Alternatively
b,=—1, c,=1 leads to the same contradiction, so the factorisation (34)
cannot exist in this case.

Thus in all cases « has no nontrivial factors.

Let A be the ambiguous ideal above. As (—d|r)=1 for all prime divisors
of b, there exist ideals B, C with N(B)=b, N(C)=c, such that ABC=(a).
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Now « has no nontrivial divisors, so ABC has no principal ideal divisors,
and in particular none of 4, B and 4B can be principal. Thus as 42 is
principal, 4 cannot be in the same class as B, so the number of classes
h>2.
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