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PRIME  QUADRATICS ASSOCIATED  WITH  COMPLEX

QUADRATIC FIELDS  OF  CLASS NUMBER TWO

M.  D.  HENDY

Abstract. We establish a necessary and sufficient relation

between those quadratic fields of class number two, and some

quadratic polynomials/(*) which take only prime values for small

positive integers.

Euler discovered that for certain primes^, namely q=2, 3, 5, 11, 17, 41,

the quadratic

(1) fix) = x2 + x + q

takes only prime values for integers in the interval 0^x^q—2. (Cf. [1].)

In fact it is known that a prime q is such a value if and only if the complex

quadratic field o(v/(l —4q)) has class number one. This test readily

gives rise to all the fields Qi-J—d) with d^.7, which have class number

one. In a similar manner we discover a quadratic similar to (1) related to

each of the complex quadratic fields of class number two.

Let d be any squarefree positive integer, and h be the class number

of the field Qiy/—d). This field has discriminant D=—d when
d=3 (mod 4), or D=—4d otherwise. From the theory of genera of com-

plex quadratic fields, we note that the class group of Qis/—d) will contain

one factor of order a power of two if and only if D has precisely two dis-

tinct prime factors. Hence h can only be two for fields Qi-J—d) of one of

the following three types :

I. d=2p,p odd prime, D=—%p.

II. d=p=l (mod 4),p prime, D=—4p.

III. d=pq=3 (mod 4), p, q prime, D= —pq.

For fields of Type HI, we will assume that p<q. For each field we associate

a quadratic/(x) similar to (1). For fields of Type I,

(2) fix) = 2x2 + p.
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For fields of Type II,

(3) fix) = 2x2 + 2x + ip + l)/2.

For fields of Type III,

(4) fix) = px2 + px + ip + q)¡4.

Theorem. A complex qua ratic field of Type I, II or III has class

number h=2 if and only if the corresponding quadratic f(x) takes only

prime values for integers x in the interval O^xKk, where k=s/(p¡2)

for fields of Type l,k= (^Jp — 1 )/2 forfields of Type II, and k=^J (pq\ 12)—\
for fields of Type III.

Proof.   The proof is established via the following lemmas.

Lemma 1.   If x is the least positive integer for which f(x)=2x2+p of

(2) is composite, then x<(p—l)ls/2^>x<yJ(pl2).

Proof. f(p) is composite, so a minimal positive integer x for which

f(x) is composite does exist. Set L0=(p—1)1^/2, L=s/(p¡2) and

Ln=v/(Lo2-n-r-(2n-l)/>2-n-1), and suppose x<L0. We find, for «j>0,

(5) L < Ln+1 < Ln <: L0,

(6) L = lim L„   and
n-*oo

(7) Ln+X = ¿V(2L* + p).

Suppose, for some w^O, x<Ln. As fix) is composite let a be its least

prime divisor. Thus

(8) a2 gfix) < 2L„2+ p ^ 2Lt+p = (p - l)2 + p < p\

and, in particular,

(9) a < V(2L2 + p)< p.

Thus/(j)=a has no real roots. Now

(10) /(|x-a|)=/(x) = 0(moda),

so that fi\x—a\) also has a as a proper divisor, and hence is composite.

f(0)=p, so x^a, and as x is minimal x<\x—a\, i.e.,

(H) x ^ a/2 < |V(L2 + p) = Ln+X.

Thus by induction x<L0=>x<L„ for each «^0, and so x^lim«^,*, Ln=

L. Equality cannot hold as L is irrational, so x<L establishing the lemma.
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Lemma 2. If x is the least positive integer for which fix) = 2x2+2x+

ip+l)¡2 o/(3) is composite, then x<(p-yf2)¡2yj2^x<(Jp-l)l2.

Proof. We use the same procedure as above in Lemma 1, with

L=Qp-l)¡2, L0=(p-y/2)l2j2 and

Ln = V(0» + *)22-n + (2n-\)p2-n-2) - h

In equation (10) we replace f(x—a)=f(a—x)=f(x) = 0 (mod a) with

f(x—a)=f(a—x—l)=f(x) = 0 (mod a), so for x minimal, x<a and

x<a—x—l. The remainder of the proof then follows.

Unfortunately a corresponding result for f(x)=px2+px+(p+q)/4

of (4) does not exist for p>3. For fields of Types I and II set a=2 and

for fields of Type III set a=p. Let A be the ambiguous ideal with N(A) = a.

This meaning of the letter a has nothing to do with its use in Lemmas 1

and 2. From now on a will have the meaning specified here.

Lemma 3. If h~>2, then there exist nonprincipal ideals B, C with the

following properties :

1. B and C are neither principal nor in the same class as A.

2. ABC is principal.

3. B is a prime ideal.

4. 1<N(B),N(C)<^(-DI3).

5. A\BC.

Proof. As N(A)< — D¡4, A cannot be principal. Let Kx be the class

of principal ideals and K2 the class containing A. As h>2 and Ki=Kx,

{Kx, K2} is a proper subgroup of the class group. Hence there exist other

classes, and atleastone of them, say K3, has a prime ideal B as its member

of least norm. As K3 is distinct from Kx, K2, so too is K1=K2K31. Let C

be an ideal of least norm of K4, so that ABC e K2K3Ki=K\=Kx is a

principal ideal.

We have an upper bound (see [1, p. 141]) on the size of the least

(according to norm) ideal of any equivalence class Kt. That is, in each

class K{ over QQ'—d) there exists an ideal Ait with N(Ai)<sJ(—D/3).

Hence B, C are ideals satisfying properties 1,2,3 and 4.

Further A\BC=>A\C as B is prime, so that there would need to exist

an ideal E, with C=AE. This would mean BE~A2BE=ABC, so BE

is principal; however, as N(E)^N(C)¡2<\SJ'(-D/3), NiBXji-D/3),

and NiBE)< — D/6 it could not be principal. Hence AjfBC.

Lemma 4. In the fields of Type I, h>2=>fix) is composite for some

integer x in the interval 0^x<^j ip¡2).

Proof. N(A)=2. From Lemma 3, there exist ideals B, C with prop-

erties 1 to 5. Set b=N(B), c=N(C). As ABC is principal there exist
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integers y, z satisfying

(12) NiABC) = 2bc = y2 + 2pz2.

Thus 2\y. Let y=2x, so that (12) gives

(13) be = 2x2 + pz2.

A\BC, so 2\bc and z is odd. Further

(14) be = NiBC)< - D13 = Sp/3 < 4p,

so, from (14), z2=l, and (13) becomes

(15) be = 2x2 + p = fix).

From (15), x2=(6c-/7)/2<5/>/6, so, for p>3, x<ji5p¡6)<ip-1)1^/2.
Further for p = 3, as x is integral x<x/(5/2)=>x^l<x/2 = (/7— l)/x/2.

Hence

(16) x<ip-l)lj2,

so, by Lemma 1, fix) is composite for some integer x in the interval

0^x<V0>/2)-

Lemma 5.    In fields of Type II, /2>2=>/(x) is composite for some

integer x in the interval 0^x<is/p—1)/2.

Proof.   As above we can find b=NiB), c=NiC) and integers y, z

so that

(17) NiABC) = 2bc = y2 + pz2.

From Lemma 3, 2)fbc, so

(18) 2bc a 2 = y2 + z2 (mod 4),

and hence both^ and z are odd. Puttingy=2x+l we obtain

(19) be = 2x2 + 2x + (1 + pz2)\2,

and further

(20) be = N(BC) < -D/3 = 4p¡3 < 2p.

Thus z2=l, and (19) becomes

(21) be = 2x2 + 2x+(p+ l)/2 =/(*).

Also, from (20), 2x2+2x-r-(/>+l)/2<4/>/3, so (x+!)2<5/>/12^/72/12^

p2ß (as/>>5). Hence

(22) 0 ̂  x < ip - V2)/2V2.
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However, from Lemma 2, fix) is composite for some integer x in the in-

terval 0^x< ijp-1)/2.

Lemma 6. In the fields of Type III, A>2=>/(x) is composite for some

integer x in the interval 0^x<y] (— D/12) — |.

Proof. We may assume pq>l6, since QisJ—pq) has class number

greater than two. NiA)=p. As above we can find b = NiB), c=NiC) and

integers j, z,y=z (mod 2) so that

(23) NiABC) = pbc = (/ + /*7z*)/4,

i.e.,

(24) 4pbc = y2 + pqz2.

If b = 2, then i2\pq)=l, so pq=l (mod 8), and hence p+q=0 (mod 8).

Thus, since/7^> 16, we find thatfi0)=ip+q)¡4 is properly divisible by 2

and hence composite.

For 6>2, from (24),/?|j, so lety=pv, so that (24) becomes

(25) 4bc = pv2 + qz2.

As AjfBC, p\bc, and hence z^O. Also if v=0, then q\bc. However b,

c<yj(pq/3)<q so qjfb, c and as q is prime ^èc. Hence v^O. b, p are

primes, (b,p)=l, so 6|z=>6|y, so, from (25),

b | z => 4c > (p + q)b > 2(p + q)

=*• 4c2 >p2+q2 + 2pq > 2/>?

=> c > V(W/2).

However as c<.s/(pq¡3), bjfz. Thus z^O (mod b), so there exists an inverse

z of z (mod b). From (25) we obtain

(26) p(vz')2 +q = 0 (mod b).

Let w be the least positive residue (mod¿) of vz . As b is odd, one of

w, ¿> — w is odd, so let u be that value and hence 0<u<b. From (26),

pu2+q=0 (mod b) while also pu2+q=p+q=0 (mod 4), so

(27) jou2 + q = 0 (mod 46).

Since ABC is principal, and C not principal, neither is AB. Thus pu2+q^

46, for otherwise 4bp=(pu)2+pq, and AB=((pu+^J—pq)\2). Thus 6

is a nontrivial divisor of (pu2+q)\4. As « is odd, let t/=2x+1 so that

(28) (pu2 + q)\4 = fix)
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which has a proper prime divisor 6, so is composite. Now

(29) 0 < x = (« - l)/2 < 6/2 - i< y/ipq/12) - |;

so again the lemma holds true.

This now establishes the first half of the theorem. The remainder

is established in a final lemma.

Lemma 7. For each field of Type I, II or III, if fix) is composite for

some integer x in the interval 0^x<k, then A>2.

Proof. Suppose fix) is composite with 0^x<k, so that fix)=bc,

with 6, c> 1, integral and 6 prime. Now with a as chosen before Lemma 3,

fix) = be => abc = (2x)2 + d for fields of Type I,

(30) = (2x + I)2 + d for fields of Type II,

= ((2* + l)2p2 + d)\4   for fields of Type III.

For fields of Type I, x^O, as fi0)=p is prime, so we find that for all

fields (6c, d)=l. Hence, from (30), (—d\r)=l for all primes r dividing

6c.

Let a be the algebraic integer 2x+s/i—d), C2.x+l)+y/i—d), or

H2x+l)p+^]i—d))/2 in the fields of Types I, II and III respectively.

Hence, in all fields of Type I, x<J ipl2)=>Nia) = i2x)2+2p<4p, i.e.,

(31) Nia) < 2d.

Similarly, in fields of Type II, x<(v//7-l)/2=>Af(a)=(2x+l)2+/?<

2p = 2d, i.e.,

(32) Nia.) < 2d.

For fields of Type III, x<s/ipqll2)-^H2x+l)2p2+pq)l4<piqll2+
pql4<p2q2(lll2+ll60),i.e.,

(33) Nia) < d2¡l0.

Using these three inequalities we now prove that the algebraic integer a

has no nontrivial factorisation. As the coefficient of yji—d) in a is 1,

a cannot be divisible by any nontrivial rational integer. Suppose a. does

have a nontrivial factorisation in algebraic integers,

(34) a = ßy

where for D=0(mod4), ß=bx+b2y/i—d), y=cx + c2sJi—d), and for

L»=l(mod4), ß=ibx+b2\ji-d))l2, y = icx + c2ji-d))l2, with bx =
b2 (mod 2), cx = c2 (mod 2).

If 62=0, ß would be a rational integer, hence ß=±l. Similarly

c2=0=>y= + l.  Hence for a nontrivial factorisation  (34) we require
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62, c2?¿0. For D=0(mod4), Nia)=Niß)Niy) = ib\+db22)ic2x+dc\)^d2,

which contradicts equations (31) and (32). For D=l (mod4),

Nix) = (62 + db22) ■ ic[ + dcDjlß

= ib2xc\ + dib\c\ + b\c\) + cT-blc2)!'16.

However as Nia)<d2¡l0 by equation (33), we must have b\c\=l, blcfKd2.

Thus, for fields of Types I or II, a can have no nontrivial factorisation

(34), and, for fields of Type III, it can only be of the form

a = H2x + \)p + Ji-d))l2

= ((bi + b2s/i-d))/2) ■ ((cx + c2sJ(-d))l2),

with 62c2=±l, and \bxcx\<d=pq. By equating real and imaginary

parts in equation (35) we find

(36) 2(2x + l)p = bxcx — b2c2d = bxcx — b2c2pq,

and

(37) 2 = bxc2 + b2cx.

As 2(2x+l)p>0, \bxcx\<pq, and |62c2| = l, then b2c2= — 1 for (36) to

hold. Suppose 62=1, c2= — 1; then, by equation (37), cx = bx + 2, and

equation (36) becomes

(38) 2(2x + \)p = 6X(6X + 2) + pq.

Hencep\bx orp\bx + 2, sop-¿min(\bx\, |6,+2|). 61# — 1, so 61(61+2)^0,

and p(p—2)^61(61 + 2). Thus it follows from equation (38) that

(39) 4x + 2^p+q -2

and, on squaring,

(40) 4(2x + I)2 ^ p2 + q2 + 2pq - 4p - 4q + 4.

However as p^.3, q^.5, p2+q2>4p+4q—4, so

(41) 4(2x + l)2 > 2pq.

Also x<^J(pqll2)—\ so 4(2x+l)2<4/?i7/3. This contradicts equation
(41), so we cannot have a factorisation with 62=1, c2= — 1. Alternatively

b2= — 1, c2=l leads to the same contradiction, so the factorisation (34)

cannot exist in this case.

Thus in all cases a has no nontrivial factors.

Let A be the ambiguous ideal above. As (—d\r)= 1 for all prime divisors

of 6c, there exist ideals B, C with N(B)=b, N(C) = c, such that ABC=io).
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Now a has no nontrivial divisors, so ABC has no principal ideal divisors,

and in particular none of A, B and AB can be principal. Thus as A2 is

principal, A cannot be in the same class as B, so the number of classes

6>2.
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