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PROPERTIES  OF  THE  SOLUTIONS  OF THE  CAUCHY
PROBLEM FOR  THE  (CLASSICAL)  COUPLED

MAXWELL-DIRAC  EQUATIONS  IN  ONE
SPACE  DIMENSION

ROBERT  T.   GLASSEY  AND  JOHN  M.   CHADAM1

Abstract. Solutions of the Maxwell-Dirac equations coupled

through the standard electromagnetic interaction are shown to

blow up at each spatial point for large times. This is used to show

that these solutions do not tend asymptotically to free solutions.

In addition it is used to prove that these equations do not admit a

nontrivial stationary solution.

1. Introduction. The Cauchy problem for the coupled Maxwell-Dirac

equations

(la) i-iyßdfl +m)y> = gy^v^y,

(ib) □iv = (^-auK = -gw,

(ic) d% = o

has recently been treated in one space dimension [1]. (See this article and

[2] for the notation and extended comments on the formulation of the

problems treated in this work.)

In particular it has been shown that a unique generalized solution of

equations (1) possessing one L2-derivative exists for all time. Here we

investigate the asymptotic behavior of this solution. Specifically we will

show that the solution blows up at each spatial point as \t\ becomes

infinite. This behavior allows us then to establish two rather different

results; namely, these solutions do not scatter nor are they stationary

in the sense of Berger [3]. The main blow up theorem follows by means of

a simple calculation from the classical form of the solution to the wave

equation in one dimension. For this reason we first prove a regularity

theorem for the generalized solutions of reference [1].
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2. Regularity. We begin by setting the notation and briefly summariz-

ing the work in reference [1]. In one space dimension the spinor field y

and the real-valued vector field v have two components. The (integrated

form of the) equivalent vector-valued version of equations (la) and (lb)

is
rt

(2a) xpit) = Dit - t0)y>° + g    £>(i - s)Vis)y>is) ds,
Jto

where (y°, (u°, t)°)T)2 is the Cauchy data at time t0, v=dv\dt, D( • ) and

Mi • ) are the free Dirac and wave propagators, and

Vit) = !(»0(0 + vxit)yY)    if    vit) = M^j

and

Jit) = fJ°(i)\ = (     ^(í)     )
\jxit)J    l-?tyyy(í)/

where y»r is the conjugate transpose of y. The existence theorem proved

in [1] is: For given data iyr°, iv°, *)°)T) e /^(^©L2),3 there exist unique

functions ip and v with

t - (v(0, (^¡j)) :(io, ») - tf1 © (ÍÍ1 © L2)

continuous, which for all t0<t<co satisfy equations (2). Classical solu-

tions of equations will be obtained as a corollary of the following result.

Theorem 2.1. The Cauchy problem for equations (2) has a unique

solution in Hn®iHn(BHn~1)for each n.

Proof. The argument consists in showing that the general results of

Segal [4] can be applied. In particular we must show that the map

(rp, (V)\ ^(vf,(°\\:Hn®iHn®Hn-1)^Hn(BiHn®Hn-1)

is locally Lipschitzian in order to obtain the local existence theorem and

2 Throughout, T will denote the transpose of the vector.

3 Actually, the spaces DiQMi/z used in [1] are equivalent to H1®(H1®Li). For our

present purposes it is more convenient to use the Sobolev norm and notation. Here

and throughout the rest we shall use the same notation for a space and its two-fold

direct sum.
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then establish that the solution can be extended for all time by showing

that its Hn®iHn®Hn-v)-norm remains finite [4, Theorem 1, p. 343].

The calculational aspects of both of these problems are summarized in

the following lemma (which is true in arbitrary dimension for k^.n/2,

n odd, k>n/2, n even).

Lemma 2.2.    Suppose f h e H^iE1); then for k^ I

(3) \\D\fh)h ^ const \\f\\k,2 \\h\\k,2,

where D is the strong-L2 derivative.

Proof of Lemma. Using the Leibniz formula for strong derivatives,

Dk(fh) consists of a linear combination of terms DlfDmh with l+m=k.

Now Sobolev inequalities give that HD'/H^const||F>y||£ II/HJ-*' where

fiHrSy-gl andp~1=l+yi\-k) + i\-y)ß. Likewise,

\\Dmh\\Q<: const WDKhWiWhWY*

with m/c_1^(3^1 and q~1=m + èi\ — rV) + (l— <5)/2. All that remains is to

show that \=p~i+q~1=m+l+\ — (y + ô)k can be satisfied with y, ô in

the required range. The last is equivalent to y + ô = (k + ^)k~1 which obtains

if y = (l+l)lc~1 and ô = (m+\)k~1. This choice is in the acceptable range

provided that / and m^k-l. If / or m=k then ||/W.||a^||/|U|Z>*A|i2

replaces the above in view of the Sobolev inequality

||/|L^const||/||J/2||Z)/||2/2

for fe Hr(El). The proof of the lemma is completed by noticing that

\\Dkf\\l ||/|ir = y \\Dkf\\2 + (i - y) Wfh = 2 ll/ll«.

Returning to the proof of the theorem, the Lipschitz property follows

from the above because every nonzero component of the nonlinearity is

the sum of products of the components of the spinor and vector field.

Thus, for example, Dk(iv0yx—ivi)'ipx) is written as the sum of terms like

ilD\v0 - v0)DmVl + D\Dm(xpx - yix)]

and estimated as in the lemma.

The extension to all time in Hn(&(Hn®H"-1) is, on the other hand, a

continuation of the "boot-strap" begun in [I]. Specifically, we show that

the HnÇB(H"(BHn~1)-norm of the solution remains finite by induction. The

first step is the content of reference [1]. For the inductive step assume

WOll»-!.* + KOL-1.2 + \m\\n-2,2 =f„-r(t)
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is finite for each r0*^f<co. Then, from equation (2b),

|(*>)| S 0(1 + (,-«> I« III \l»(f)/ II »©n-1,2 II \V I ||n©»-1.2

(4)
r ii/ o mi

+ cg (i + (f-S))    ; )        ds,
Jto || \J(S)/ ||n©»-1.2

using the estimate

II <sp \ II II / cp \ II
M(i)     x *<c(n)(l + f)   TM

\ fj ||»©n-1.2 || \ <P2/ ||«©n-l,2

But

ll( u,)\\ = Wf^(s)\\n-i.2 Û const \\y>(s)\\2n-i.2 = const fUis).
|| \J(S)/ || «©»-1,2

Thus \\ivit), i5(0)Tll«e«-i.2 ¡s continuous and finite for each r0^r<oo.

Likewise, from equation (2a),

WOIL.« =~ C \\V°\\n.2 + gc\t\\Vis)y,is)\\n_2ds

(5) ;,,
^c||v°L., + g-?f   ("if) \\f(s)\\n,2ds,

JU  ||\l"(s)/     «©«-1.2

using the fact that the Dirac propagator Dit) : Hn^>-Hn is bounded and the

estimate (3). The result now follows by applying the Gronwall lemma to

inequality (5).

If the data ip°, (v°, t)°)T have arbitrarily many L2-derivatives (for

example, if they are in if), then the solution of equations (2) is in

f)»=i Hn®iH"®H"-1) and can be differentiated an arbitrary number of

times [4, Theorems 2 and 3, pp. 351-353] to give that

rp, v e H #"((/„, œ) x F1).
«=i

By Sobolev's Imbedding Theorem y>, v have C°°((r0, oo)xF1) representa-

tives which satisfy equations (la) and (lb) in the classical sense.

3. Asymptotics and scattering. Throughout this section we shall take

/0=0 for notational convenience.

Theorem 3.1. If y, v = iv0, vx)T is a classical solution of equations (la),

(lb)withCauchydata f°, (y°, v0)"1 in¿7andy>°^0, thenUm^^, t»0(x, t)=co

for each x e E1.
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Proof.   If *;" and ¿ü are the Cauchy data for v0ix, t) then

1 Cx+t
voix, t) = Hvlix + t) + v°0(x -t)) + ~        Kiy) dy

2 Jx-t
(ft)

+ - ipiy>iy,T)dy dr.
2 JO Jx-(t-r)

Thus

1   f °° R C° f °°
limi;0(x, i) = -       v°0iy) dy + - lim Xx.tW^¥jt r) dy dr
i-*oo 2 J— oo 2r-»oo JO   J—oo

where %xA is the characteristic function of the interior of the backward

characteristic cone through (x, t). The last term is

vV/". t) dy dr
Jo    J-oo2

by the monotone convergence theorem, and is, in turn, equal to

a /•-» r /•«>

- \piipiy,r)dy
2 Jo   [_J—oo

by the Fubini-Tonelli theorem. But

f" yifiy, r) dy = f °° v»t y(3», 0) dy = f °° J°(y) dy > 0
J—oo J—ao J—00

by charge conservation [1, Proposition 3.1]. Thus t»°(x, t) blows up at each

x for large /.

The above result can, as expected, be used to show that equations (la)

and (lb) do not have a scattering theory. More specifically we show that

the physical-to-free wave operators do not exist in any reasonable sense.

Theorem 3.2. There is no free solution ii.e. solution o/(la), (lb) with

g=0) with Cauchy data in y to which the solution of Theorem 3.1 tends in

H1®iH1®L!s).

Proof. Suppose ip+, (*•+, ¡)+)T is the free solution which is asymptotic-

ally similar to the given solution. Then

114(0 - »tXOIL = const \\v+it) - i»0(i)lli,2 -> 0   as f ̂  oo.

But ||i>o(0lloo^c<co for all / because it has data in if while ||i-o(Olloo->*00

as t—»-co by Theorem 3.1, thus giving the contradiction.

Theorem 3.1 can also be used to show that equations (la), (lb) and (lc)

cannot have stationary solutions (i.e. solutions y>, v with |y(x, t)\ =

\ipix, 0)| and \v(x,t)\ = \v(x,0)\). Inasmuch as stationary solutions are
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analogous to bound states and hence extreme opposites to scattering

solutions, it is interesting to note that Theorem 3.1 is instrumental in the

proof of the nonexistence of both of these types of solutions.

Theorem 3.3. There are no nontrivial stationary solutions' of equations

(la), (lb) and (lc) with data in £f.

Proof. On the one hand lim^^ v0(x, r)=oo by Theorem 3.1. But

integration of (lc) gives v0(x, t)=v0ix, 0)-f-J*Ó dvx(x, r)jdx dr. Both sides

of the current conservation equation

-TZ(x,0 = --vtyVV^0
at ox

[1, Proposition 3.1] are zero since the solution is stationary (i.e.

ip^fix, t)=ipfipix, 0)). Integration of the conservation equation with

respect to x from — oo to x gives that ip^y^ipix, t) = 0 since y e (")»=i Hn

and hence tends to zero as |x|—»-co. Thus vx satisfies the free wave equation

and so

u0(x, () = vlix) - \lv\\x - t) - v\\x + t)]

- -  [vWx - r) - v[ix + r)dr •
2 Jo

which is bounded at each x when r—»-co. The only way to remove this

contradiction is to take \ip(x,0)\ = \ip(x, t)\=0, thus entirely eliminating

the interaction.
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