A GENERALIZATION OF THE RUDIN-CARLESON THEOREM

PER HAG

ABSTRACT. The purpose of this paper is to prove a common generalization of a theorem due to T. W. Gamelin [3] and a theorem due to Z. Semadeni [5]. Both these results are generalizations of E. Bishop's abstract version of the well-known Rudin-Carleson theorem [2].

In the following X denotes a compact Hausdorff space, F a closed subset of X and C(X) and C(F) denote the spaces of all complex-valued functions on the topological spaces X and F respectively. A denotes a closed linear subspace of C(X) with respect to the sup norm topology, and A|F denotes the set of all restrictions of the elements of A to F. For $\tilde{f} \in A$, $\tilde{f}|F$ denotes the restriction of \tilde{f} to F and for $\mu \in M(X)$, the set of all complex Radon measures on X, μ_F denotes the restriction of μ to F. By A^{\perp} we understand the set of all elements $\mu \in M(X)$ with the property that $\int_X \tilde{f} d\mu = 0$ for all $\tilde{f} \in A$.

Our purpose in this paper is to present a common generalization of the following two theorems:

THEOREM 1 (SEMADENI). Assume that the condition,

(*)
$$\mu \in A^{\perp} \Rightarrow \mu_F = 0 \text{ for all } \mu \in M(X),$$

is satisfied. Let $a_0 \in C(F)$ and let $\psi: X \rightarrow (0, \infty]$ be a lower semicontinuous function such that $|a_0(x)| \leq \psi(x)$ for all $x \in F$. Then there exists an $\tilde{a} \in A$ such that $\tilde{a}|F=a_0$ and $|\tilde{a}(x)| \leq \psi(x)$ for all $x \in X$.

THEOREM 2 (GAMELIN). Assume that the condition,

$$(**) \mu \in A^{\perp} \Rightarrow \mu_F \in A^{\perp} for all \ \mu \in M(X),$$

is satisfied. Let $a_0 \in A \mid F$ and let $p: X \to (0, \infty)$ be a continuous function such that $|a_0(x)| \leq p(x)$ for all $x \in F$. Then there exists an $\tilde{a} \in A$ such that $\tilde{a} \mid F = a_0$ and $|\tilde{a}(x)| \leq p(x)$ for all $x \in X$.

Our theorem is the following:

THEOREM 3. Assume that condition (**) is satisfied. Let $a_0 \in A|F$ and let $\psi: X \rightarrow (0, \infty]$ be a lower semicontinuous function such that $|a_0(x)| \leq \psi(x)$

Received by the editors March 19, 1973.

AMS (MOS) subject classifications (1970). Primary 46J10; Secondary 54C20.

for all $x \in F$. Then there exists an $\tilde{a} \in A$ such that $\tilde{a}|F=a_0$ and $|\tilde{a}(x)| \leq \psi(x)$ for all $x \in X$.

Observe that condition (**) is weaker than condition (*). Observe also that the conclusion in Theorem 1 is a stronger one than the conclusion in Theorem 2. (The fact that any $a_0 \in C(F)$ can be extended to an element in A in Theorem 1 follows immediately from the well-known fact that condition (*) implies that F is an interpolation set for A.) Hence our theorem, dealing with the weaker condition and the stronger conclusion, generalizes both these theorems.

To prove Theorem 3 we need the following lemma:

LEMMA. Assume that condition (**) is satisfied. Let $a_0 \in A | F$ and let $\phi: X \rightarrow (0, \infty]$ be lower semicontinuous and such that $|a_0(x)| \leq \phi(x)$ for all $x \in F$. Then for each $\varepsilon > 0$ there exists an $\tilde{a}_{\varepsilon} \in A$ such that $\tilde{a}_{\varepsilon} | F = a_0$ and $|\tilde{a}_{\varepsilon}(x)| \leq \phi(x)(1+\varepsilon)$ for all $x \in X$.

PROOF OF LEMMA. Here and in the proof of Theorem 3 we can assume without loss of generality that ϕ is bounded. [If this is not the case, we introduce the function $\phi_0 = \phi \wedge (|\tilde{a}| \vee \min \phi)$ instead of ϕ , where \tilde{a} is an arbitrary extension of a_0 in A.]

Next we observe that ϕ , being lower semicontinuous and strictly positive, attains a minimum m>0. Choose $\varepsilon>0$ and define $\varepsilon'=m\cdot\varepsilon$.

We claim that there exists a continuous function $p: X \rightarrow (0, \infty)$ such that

$$|a_0(x)| < p(x) \le \phi(x) + \varepsilon'$$
 for all $x \in F$

and such that

$$p(x) \le \phi(x) + \varepsilon'$$
 for all $x \in X$.

To prove this claim we use the fact that there exists a monotone increasing sequence $\{f_n\}_{n=1}^{\infty}$ of continuous real-valued functions on X such that

$$\lim_{n\to\infty} f_n(x) = \phi(x) + \varepsilon' \quad \text{for all } x \in X.$$

We introduce the sets $K_n = \{x \in F; f_n(x) \le |a_0(x)|\}$ for all n. We observe that $\{K_n\}_{n=1}^{\infty}$ is a monotone decreasing sequence of compact subsets of F with $\bigcap_{n=1}^{\infty} K_n = \emptyset$. Hence there exists an $n = n_1$ such that $K_{n_1} = \emptyset$. This implies that $f_{n_1}(x) > |a_0(x)|$ for all $x \in F$. Obviously $f_{n_1}(x) \le \phi(x) + \varepsilon'$ for all $x \in X$. By a similar argument it follows that there exists an $n = n_2$ such that $f_{n_n}(x) > 0$ for all $x \in X$. Let $n_0 = \max(n_1, n_2)$. Now choose $p = f_{n_0}$.

To complete the proof of the lemma we now apply Theorem 2 and conclude that there exists an $\tilde{a}_{\varepsilon} \in A$ such that $\tilde{a}_{\varepsilon}|F=a_0$ and $|\tilde{a}_{\varepsilon}(x)| \leq p(x)$ for all $x \in X$. But this implies that

$$|\tilde{a}_{\varepsilon}(x)| \leq \phi(x) + \varepsilon' \leq \phi(x) + \varepsilon \cdot \phi(x)$$
 for all $x \in X$.

PROOF OF THEOREM 3. Choose $\varepsilon = \frac{1}{4}$ in the lemma. Then we know that there exists a function $\tilde{g}_1 \in A$ such that $\tilde{g}_1 | F = a_0$ and $|\tilde{g}_1(x)| \leq 5\psi(x)/4$ for all $x \in X$.

Assume, as induction hypothesis, the existence of the functions $\tilde{g}_1, \tilde{g}_2, \dots, \tilde{g}_{n-1} \in A$ with $\tilde{g}_i | F = a_0$ and such that

$$|\tilde{g}_i(x)| \le \psi(x)(1+1/2^{j+1})$$
 for all $x \in X$

and

$$|\tilde{g}_j(x)| \leq \frac{1}{2}\psi(x)$$
 for all $x \in X \setminus U_j$,

where $U_1 = X$ and

$$U_i = \{x \in X; |\tilde{g}_k(x)| < \psi(x)(1+1/2^{j+1}), 1 \le k \le j-1\}$$

for
$$j \in \{2, 3, \dots, n-1\}$$
.

We next define the set

$$U_n = \{ x \in X; |\tilde{g}_k(x)| < \psi(x)(1 + 1/2^{n+1}), 1 \le k \le n - 1 \}.$$

Since any function of the form $c\psi - |\tilde{g}_j|$, where c is a positive constant, is lower semicontinuous, it follows that the sets U_j , $j=1, 2, \dots, n$, are all open. Furthermore, $F \subseteq U_j$ for each j.

By Tietze's theorem there exists a continuous function $h_n: X \rightarrow R$ such that

$$2^{-1} \cdot (1 + 1/2^{n+1})^{-1} \le h_n(x) \le 1$$
 for all $x \in X$

and $h_n(x)=1$ for $x\in F$ and $h_n(x)=2^{-1}(1+1/2^{n+1})^{-1}$ for $x\in X\setminus U_n$. The function $\psi_n=h_n\cdot \psi$ is therefore strictly positive and lower semicontinuous and such that $|a_0(x)|\leq \psi_n(x)$ for all $x\in F$. Using the lemma, we know that there exists a $\tilde{g}_n\in A$ such that

$$\tilde{g}_n|F = a_0$$
 and $\tilde{g}_n(x) \le \psi_n(x)(1 + 1/2^{n+1})$ for all $x \in X$.

From this follows

$$|\tilde{g}_n(x)| \le \psi(x)(1+1/2^{n+1})$$
 for all $x \in X$

and

$$|\tilde{g}_n(x)| \leq \frac{1}{2}\psi(x)$$
 for all $x \in X \setminus U_n$.

We now define:

$$\tilde{a}(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \, \tilde{g}_n(x)$$
 for all $x \in X$.

Since ψ is bounded and A is a Banach space, it follows that the Cauchy sequence $\tilde{s}_N = \sum_{n=1}^N 2^{-n} \tilde{g}_n$ converges in sup norm. Hence $\tilde{a} \in A$. Furthermore $\tilde{a}|F=a_0$ since $\tilde{g}_n|F=a_0$ for all n.

344 PER HAG

It remains to prove that $|\tilde{a}(x)| \leq \psi(x)$ for all $x \in X$. Assume first that $x \in U_n$ but $x \notin U_{n+1}$, $n \in \{1, 2, \dots\}$. Then we have

$$|\tilde{g}_i(x)| < \psi(x)(1 + 1/2^{n+1})$$
 for $1 \le j \le n$

and

$$|\tilde{g}_j(x)| \leq \frac{1}{2}\psi(x)$$
 for $n < j$.

(Observe that $U_{k+1} \subseteq U_k$ for all $k \in \{1, 2, \dots\}$.) From this follows:

$$|\tilde{a}(x)| \leq \psi(x) \left(1 + \frac{1}{2^{n+1}}\right) \sum_{i=1}^{n} \frac{1}{2^{i}} + \frac{\psi(x)}{2} \sum_{i=n+1}^{\infty} \frac{1}{2^{i}} = \left(1 - \frac{1}{2^{2n+1}}\right) \psi(x) < \psi(x).$$

If $x \in U_n$ for all n, we have $|\tilde{g}_n(x)| \leq \psi(x)$ for all n and therefore $|\tilde{a}(x)| \leq \psi(x)$. \square

REMARK. The proof of the lemma is based on an idea communicated to me by Professor B. A. Taylor of the University of Michigan. In [4] a more cumbersome proof of this lemma is given. This latter proof is based on an idea due to Semadeni [5], used in his proof of Theorem 1. The same proof is also in Alfsen-Hirsberg [1].

The proof of Theorem 3 from the lemma is a modification of the method used by Gamelin [3] in his proof of Theorem 2.

REFERENCES

- 1. E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of $\mathscr{C}_{C}(X)$, Preprint Series, Institute of Mathematics, Univ. of Oslo, 1970.
- 2. E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143. MR 24 #A3293.
 - 3. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- **4.** P. Hag, Restrictions of convex subsets of C(X), Ph.D. dissertation, University of Michigan, Ann Arbor, Mich., 1972.
- 5. Z. Semadeni, Simultaneous extensions and projections in spaces of continuous functions, Lecture Notes, University of Aarhus, 1965.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TRONDHEIM, TRONDHEIM, NORWAY