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A  GENERALIZATION  OF THE  RUDIN-CARLESON
THEOREM

PER  HAG

Abstract. The purpose of this paper is to prove a common

generalization of a theorem due to T. W. Gamelin [3] and a

theorem due to Z. Semadeni [5]. Both these results are generali-

zations of E. Bishop's abstract version of the well-known Rudin-

Carleson theorem [2].

In the following X denotes a compact Hausdorff space, F a closed

subset of X and C(A') and C(F) denote the spaces of all complex-valued

functions on the topological spaces X and F respectively. A denotes a

closed linear subspace of C(A") with respect to the sup norm topology,

and A\F denotes the set of all restrictions of the elements of A to F.

For/e A,f\F denotes the restriction off to F and for p e M(X), the set

of all complex Radon measures on X, pF denotes the restriction of p to F.

By A L we understand the set of all elements p e M(X) with the property

that 5X fdp=0 for allfeA.
Our purpose in this paper is to present a common generalization of

the following two theorems :

Theorem 1 (Semadeni).    Assume that the condition,

(*) p e A L => pF = 0  for all p e M(X),

is satisfied. Let a0 e C(F) and let ip:X—>(0, co] be a lower semicontinuous

function such that \a0(x)\~¿xp(x) for all x e F. Then there exists an ä e A

such that (î|F=a0 and \ä(x)\^y>(x)for all xeX.

Theorem 2 (Gamelin).    Assume that the condition,

(**) p e A1 => pF e A1-   for all p e M(X),

is satisfied. Let a0eA\F and let p:X—>(0, oo) be a continuous function

such that \a0(x)\^p(x) for all x e F. Then there exists an ä e A such that

ä\F=a0 and \ä(x)\^p(x) for all x e X.

Our theorem is the following:

Theorem 3. Assume that condition (**) is satisfied. Let a0 e A\F and

let ip:X-+(0, oo] be a lower semicontinuous function such that \a0(x)\^xp(x)
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for all x e F. Then there exists ande A such that ä\F=a0 and \ä(x)\ ^rp(x)

for all xeX.

Observe that condition (**) is weaker than condition (*). Observe also

that the conclusion in Theorem 1 is a stronger one than the conclusion

in Theorem 2. (The fact that any a0 e C(F) can be extended to an element

in A in Theorem 1 follows immediately from the well-known fact that

condition (*) implies that F is an interpolation set for A.) Hence our

theorem, dealing with the weaker condition and the stronger conclusion,

generalizes both these theorems.

To prove Theorem 3 we need the following lemma:

Lemma. Assume that condition (**) is satisfied. Let a0eA\F and let

r/>:A—»-(0, oo] be lower semicontinuous and such that \aQ(x)\^(f>(x) for all

x e F. Then for each e>0 there exists an ae e A such that äe\F=a0 and

K(x)|^<p0c)0 +e)for all x e X.

Proof of Lemma. Here and in the proof of Theorem 3 we can

assume without loss of generality that <f> is bounded. [If this is not the

case, we introduce the function <p0=<pA(|5|v min </>) instead of <p, where ä is

an arbitrary extension of a0 in A.]

Next we observe that <p, being lower semicontinuous and strictly

positive, attains a minimum w>0. Choose s>0 and define s'=m ■ s.

We claim that there exists a continuous function/?: Ar-»(0, oo) such that

laoWl < />(*) = 4>(.x) + e    for all x e F
and such that

pix) ^ <f>ix) + e    for all xeX.

To prove this claim we use the fact that there exists a monotone in-

creasing sequence {fn}n=i of continuous real-valued functions on X such

that

lim fnix) = 4>ix) + e'   for all xeX.
n->oo

We introduce the sets Kn={x e F;f„ix)^\a0ix)\} for all n. We observe

that {K„}n=x is a monotone decreasing sequence of compact subsets of F

with (~)n=iKn=0. Hence there exists an «=«, such that Knj = 0. This

implies that fniix)>\a0ix)\ for all x e F. Obviously fn([x)^<f>ix) + e' for

all x e X. By a similar argument it follows that there exists an n=n2 such

that/„2(x)>0 for all x e X. Let »0=max(»,, n2). Now choosep=f„0.

To complete the proof of the lemma we now apply Theorem 2 and

conclude that there exists an äc e A such that äc\F=a0 and |à£(x)|^/»(x)

for all xeX. But this implies that

|âe(jc)| 5; <pix) + s' -¿ (-S(x) + e • <f>ix)   for all x e X.    D
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Proof of Theorem 3. Choose £=J in the lemma. Then we know that

there exists a function gxeA such that gx\F=a0 and |g,(;c)|5?5y>(je)/4

for all x e X.

Assume, as induction hypothesis, the existence of the functions

git g?., • ■ ■, gn-i e A with gj\F=ao and such that

||,(x)| ¡g fix)il + 1/2«-1)   for all* eX
and

\gi(.x)\ = M*)   forallxeA^t/,,
where <71 = A'and

U4 = {x 6 A"; I&OOI < y»(x)(l + l/2'+1), l^k^j-l}

forje{2,3,---,n-l}.

We next define the set

Un = {xe X; \gkix)\ < v(x)(l + 1/2"+!), l^k^n-l).

Since any function of the form cf — \g¡\, where c is a positive constant,

is lower semicontinuous, it follows that the sets U¡, y = 1, 2, • • • , n,

are all open. Furthermore, Fç U¡ for each y.

By Tietze's theorem there exists a continuous function h„:X->-R

such that

2-1 • (1 + l^1)-1 *S h„ix) ^ 1    for all x e X

and /*„0t) = l for xeF and /2„(x)=2-1(l + l/2"+1)-1 for x e X\Un. The

function fn=hn • y is therefore strictly positive and lower semicontinuous

and such that |a0(x)|^y„(x) for all xeF. Using the lemma, we know

that there exists a gn e A such that

gn\F = a0   and   |„(x) ^ y-B(x)(l + l/2"+1)    for all x e AT.

From this follows

If »001 Ú V>(x)(l + 1/2»-»-1)   for all x g A-
and

UnWI^ivW    forallxeA-\C/n.

We now define:
oo      j

5(x) = 2 ™gn(x)   for all xeI
71=1  ^

Since y» is bounded and /I is a Banach space, it follows that the Cauchy

sequence sN= 2^=1 2~ngn converges in sup norm. Hence äeA. Further-

more â|F=a0 since gn\F=a0 for all n.
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It remains to prove that \ä(x)\^y(x) for all xeX. Assume first that

x eUn but x $ Un+X, n e {1, 2, • • •}. Then we have

|f,(*)| < w(x)(l + l/2»+i)   for 1 £j < n
and

lfi(*)l2äM*)   forn<y.

(Observe that Uk+X s Uk for all k e {1, 2, • • •}.) From this follows :

(1   \   n   1      w(x)   °°    1      / 1   \

1 + 2^) i ? +   2   ,|+1? = I1 " 2^) V(X) < **>

If x e £/„ for all n, we have \gn(x)\^ip(x) for all « and therefore \ä(x)\^

f(x).    D
Remark. The proof of the lemma is based on an idea communicated

to me by Professor B. A. Taylor of the University of Michigan. In [4]

a more cumbersome proof of this lemma is given. This latter proof is

based on an idea due to Semadeni [5], used in his proof of Theorem 1.

The same proof is also in Alfsen-Hirsberg [1].

The proof of Theorem 3 from the lemma is a modification of the method

used by Gamelin [3] in his proof of Theorem 2.
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