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ON ISOMORPHIC  GROUPS  AND HOMEOMORPHIC  SPACES

J.  S.   YANG

Abstract. Let C(X, G) denote the group of continuous

functions from a topological space X into a topological group G

with the pointwise multiplication. Some classes of SQ-pairs and

properties of the corresponding topological group C(X, G) with

the compact-open topology are investigated. We also show that the

existence of a group isomorphism between groups C(X, G) and

C( Y, G) implies the existence of a homeomorphism between X and

y, if (X, G) and ( Y, G) are Sß-pairs.

1. Introduction. For a topological space X and a topological group G,

let CiX, G) be the group of all continuous functions from X into G with

the pointwise multiplication, that is, ifg)ix)=ffx)gix); the identity element

of the group CiX, G) is the constant function I0iX, G), or simply 10,

which maps every x in Xinto the identity element e of G. It is well known

that if CiX, G) is endowed with the compact-open topology, it becomes

a topological group. It is clear that if h is a homeomorphism of X onto

Y, then/—>-/°/». is an isomorphism from C(F, G) onto CiX, G) which

maps every constant function on Y into the corresponding constant

function on X. We are concerned, in this paper, with the question: If a

group isomorphism exists between C( Y, G) and CiX, G) which maps

every constant function on Y into the corresponding constant function

on X, does there exist a homeomorphism between X and Yl In general,

the answer to this question is, of course, no, for we may take X to be

a noncompact pseudocompact space, and then there is a ring isomorphism

between the rings CiX, R) and CißX, R) but X and ßX are not homeo-

morphic.

We find that the answer to the above question is yes for certain pairs

iX, G) of topological space X and topological group G. Such pairs are

termed SQ-pairs as defined in [9]. §3 is devoted to proving this assertion

by showing first that, if A" is a »V-space, X is homeomorphic to the space

of all c-continuous homomorphisms of the topological group CiX, G)

onto the topological group G with F-normal subgroups as kernels and
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endowed with the compact-open topology. We disclose some classes of

iSg-pairs, and some properties of CiX, G) in §2.

All topological spaces considered here are assumed to be Hausdorff.

2. Sß-pairs. For each p in X, let Mp = {fe CiX, G) :/(/») = <?}, and

let hp be the evaluation map of CiX, G) onto G defined by /z„ (/)=/(/>)•

For each r in G, let r denote the constant function in CiX, G) which maps

X into r. Then hp is a continuous homomorphism of CiX, G) onto G

with Mp as its kernel and maps every constant function r into r. Hence

we see that CiX, G)\MP is isomorphic to G under the continuous iso-

morphism that maps every coset cMv into c. Note that for each p in

X, every coset cMp contains exactly one constant map, namely c.

For the sake of convenience, let us call a homomorphism of CiX, G)

(or CiX, G)/M) onto G a c-homomorphism if it maps every r (resp. rM)

into r. Every evaluation map is a c-continuous homomorphism of CiX, G)

onto G.

In contrast to the fact that every nonzero homomorphism of CiX) =

CiX, R) onto R is a c-homomorphism [5, 10.5], not every continuous

homomorphism of CiX, G) onto G is a c-continuous homomorphism,

as the following example shows.

Example. Let G be the additive group of integers modulo 2 with the

discrete topology. Then C(G, G) = {I0,fx,f2,f3}, where/ is the function

which maps G into 1 ,/2 is the function which maps 1 into 1 and 0 into 0,

and/3 is the one which maps 0 into 1 and 1 into 0. The compact-open

topology for CiG, G) is the discrete topology. If we define a mapping h:

CiG,G)^G by defining /¡(/0)=/-(/, ) = 0, hif2) = hif3)=l, then h is an
onto homomorphism, yet it is not a c-homomorphism.

For/e CiX, G), we let Zif) = {x e X:fix) = e}, and for a subgroup M

of CiX, G), letZ(M) = {Z(/):/e M}. Note that, for any/and g in CiX, G),

Z(fg) => ZIJ) n Zig),       Zif-i)=Zif)   and   Z(fgf->) = Z(g).

Definition 1 [9]. We shall call a pair (X, G) of a topological space

X and a topological group G an 5-pair if, for each closed subset C of X

and x $ C, there exists/e C(X, G) such that Z(/)=> C andf(x)^e.

It is clear that iX, R) is an S-pair for every completely regular space,

and that if (X, G) is an 5-pair then X is completely regular.

Remark 1. If X is a topological space such that each x in X has a

local base Ux satisfying the property that, for each U in Ux there exists a

continuous function/of D into G such thatf(x)^e but fiy) = e for each

y in Ü—U, then iX, G) is an 5-pair. To see this, let C be a closed subset

of X and x $ C. Then, for some U in Ux, x e U^X—C; and let/be a

continuous function on 0 into G such thatf(x)^e but f(y) = e for each y
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in Ü—U. Define g:X—>-G such that g=f on D and g(y)=e for y $ Ü.
Then g e C(X, G), Z(g)^ C, and g(x)*e.

Remark 2.    If X is completely regular, and G is path connected, then

(X, G) is an 5-pair. To see this let r#e be in G. If C is a closed subset of

X and x$C, let/be a continuous function of X into [0, 1] such that

f(x)=l and/(C) = {0}, and let g: [0, 1]->G be the path such that g(0)=e

and #(1)-=/. Then g °fis the desired function in CiX, G).

Remark 3.    For every zero-dimensional space X, iX, G) is an 5"-pair.

We point out that, if B is a closed subset of X and (X, G) is an S-pair,

then (B, G) is also an S'-pair.

Definition 2 [9]. (1) A normal subgroup M of C(X, G) is called

an F-normal subgroup if {Z(/):/e A/} has the finite intersection property.

(2) A pair (X, G) of a topological space X and a topological group G

is called a g-pair if whenever M is an F-normal subgroup of C(X, G)

such that C(X, G)[M is isomorphic to G by a c-isomorphism, then

H    Z(M)y¿0.
It is clear that if A' is a completely regular space such that (X, R) is a

Q-pah, then X is realcompact. As pointed out in [9], (X, G) is a (3-pair

if X can be embedded into G as a subspace of G. Since every completely

regular space A" is a closed subspace of the free topological group F(X)

generated by X, and every topological group can be embedded as a closed

subgroup of a path connected and locally path connected topological

group [6], we see that for every completely regular space X there exists

a path connected and locally path connected topological group G such

that (X, G) is an SQ-pair. If X is compact, (X, R) is an 5*2-pair.

If (A', G) is a ß-pair, then the only F-normal subgroups of C(X, G)

such that C(X, G)¡M is c-isomorphic to G are of the form Mp, p e X

[9]. Thus we have the following:

Proposition 4. An S-pair (X, G) is a Q-pair if and only if every

c-homomorphism h of C(X, G) onto G with an F-normal subgroup as its

kernel is of the form hvfor some p e X.

Proof. For the necessity, let M be the kernel of h, then C(X, G)/M

is c-isomorphic to G. Hence there is p e f] Z(M) such that M = MP.

Therefore ker /¡ = ker hP. Now for/e C(X, G), letf(p) = c, and let g=fo~1,

then g e MP = M. Hence

h(f) = Afee) = h(g)h(c) = hig)c = c =f(p) = h„if).

This shows that h=hp.

For the sufficiency, suppose M is an F-normal subgroup of C(X, G)

such that C(X, G)/M is c-isomorphic to G by the c-isomorphism k. Let

h=k ° a, where a is the natural map of C(X, G) onto C(X, G)¡M. Then /*
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is a c-homomorphism of C(X, G) onto G with M as its kernel. Hence

there is a unique/» e Xsuch that h=hp, and thus M=MP.

Following [7], we call a topological space X a F-space if for points

p, q, x, and y of X, where p¥^q, there exists a continuous function /

of X into itself such that f(p)=x and f(q)=y. It is shown in [7] that every

completely regular path connected space and every zero-dimensional

space is a F-space.

Recall that a topological space X is said to be an ¿¡"-space if, for each

pair of distinct points of X, there is a continuous real-valued function

on X whose values at these points do not coincide. R. Arens defined it in

[1], and has shown that, if the space C(X, R) satisfies the first axiom of

countability and X is an S-space, then X is hemicompact. Adopting the

same line of argument, we have the following:

Theorem 5. If (X, G) is an S-pair, G is a V-space, and if C(X, G)

satisfies the first axiom of countability, then X is hemicompact and G is

metrizable.

Proof. Since G can be embedded as a retract of C(X, G), G is metriz-

able. For the hemicompactness of X, the proof is not different from that

of [1, Theorem 8] and thus omitted.

It is remarked that, if X=\Jn=x Cn where C\c C2C C3, • • • , is hemi-

compact and if {Vn} is a countable local base for e in G, then {(Cn, Vm)}

is a local base at I0 in C(X, G), and hence C(X, G) is metrizable, where

(C„, VJ = {fe CiX, G):fiCn)<= VJ.

Lemma 6. Let iX, G) be an S-pair, and let O be an open covering for

X. For each closed subset C of X contained in some member of O and for

each open neighborhood U of e in G, let (C, U) = {fe CiX, G):ßC)<= £/}.

Then the topology t for the group CiX, G) having the family of sets of the

form (C, U) as subbasic neighborhoods of I0 is jointly continuous, that is,

the map P:Xx CiX, G)->G defined by F(/, x)=fox) is continuous.

Proof. Let/e CiX, G), xeX, and let IF be a neighborhood of/(x).

Then /(*)[/<= W for some open set U in G containing e, and hence

x ef~1ifix)V)C\0, where xeO eu. and V an open neighborhood of e

such that F2«= U. If C is a closed neighborhood of x such that

C^f^iffx)V)nO, then, for g e/(C, V) and yEC, g(y)ef(y)V^
/(x)[/c w. Hence P is continuous.

Theorem 7. Let LX, G) be an S-pair, where G is a V-space. If there

exists a smallest jointly continuous topology t for the group CiX, G),

then X is locally compact.
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Proof. The proof is similar to that of [1, Theorem 3]. Let a be an

element of G different from e, and let U be a neighborhood of e in G

such that a$ U', and let xeX. By the joint continuity of t, let F be a

neighborhood of x, and W a /-neighborhood of I0 such that g(F)c U

for every g in W. We want to show that V is compact.

Let Q be an open covering for V, and let Q' = {X— F}u£L Then Q'

is an open covering for X. Let t' be the topology for C(Ar, G) induced by

Í2' as described in Lemma 6, then we have '<=('. Hence there are closed

sets C¿c Of of A" and open neighborhoods U, of e in G, i—l,2, • • • , n,

such that W' = r}?=xiCi, Ut) is contained in W. Let 0=F-U?-i Q.
and suppose that/» e O. Then there is/in CXA", G) such thatZ(/)^> A"— O

and fip)^e. Let g be a continuous function of G into itself with gie)=e

and gifip))=a, and let g=g of Then hiX—0)=e and hip)=a, hence

/* e IF'. But/? is in Fand hip)=a $ U; we have A ̂  IF which is impossible.

Hence 0 = 0, and we have Fe (JJ^ C4<= U"=i 0¿- Therefore Pis compact.

Corollary. 7/" (A', G) is an S-pair, where G is a V-space, and Xx

CiX, G) is a k-space, where CiX, G) has the compact-open topology, then

X is locally compact.

Proof. If Xx CiX, G) is a ¿-space, then the compact-open topology

for CiX, G) is jointly continuous [2]; hence X is locally compact.

The above corollary generalizes a result in [2]. As an application, we

show in the following example that the product of two topological groups

which are ¿-spaces need not be a ¿-space, a fact pointed out by N. Noble

[8].
Example. Let X be the dual space of an infinite-dimensional Fréchet

space with the compact-open topology. Then A" is a topological group

which is a hemicompact ¿-space but is not locally compact. If G is any

metrizable topological group which is also a F-space such that (A', G)

is an S-pair, then C(A", G) is metrizable by the remark following Theorem

5. Since A is not locally compact, Xx C(A", G) is a topological group but

is not a ¿-space as follows from the above corollary. This example was

cited by N. Noble [8] for the case where G is the additive group of real

numbers.

3. Isomorphic groups.    This section is devoted to prove the following:

Theorem 8. Suppose that (A", G) and ( Y, G) are SQ-pairs. If there

exists an isomorphism between groups C( Y, G) and C(A", G) which maps

every constant function on Y into the corresponding constant function on X,

then X and Y are homeomorphic.

All pairs (Z, G) considered in this section are assumed to be Sß-pairs.

Since every noncompact pseudocompact space X is not realcompact,
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(A", R) cannot be a ß-pair, thus Theorem 8 is false if (A", G) is not a

ß-pair.

In order to establish Theorem 8, we first prove that, if A" is a ¿-space,

X is homeomorphic to the space of all c-continuous homomorphisms of

the topological group C(A", G) onto the topological group G with F-

normal subgroups as kernels and endowed with the compact-open

topology; let //(A", G) denote such a space of c-continuous homomor-

phisms. For each p e X, the evaluation map hB is in //(A", G), hence the

correspondence p-*-hp defines a map p from X into HiX, G).

Theorem 9. If X is a k-space, the mapping p is a homeomorphism

of X onto HiX, G).

Proof.    Proposition 4 implies that p is onto.

If pjtq in X, there is/e C(A", G) such that/(/»)^foq), hence h„if)j£
hqif). Thus p is one-to-one.

The continuity of p follows from Theorem 2 of [4], which states that

if F is a family of continuous functions from a ¿-space X into a regular

space Y endowed with the compact-open topology, then the mapping

6:X->CiF, Y) defined by ö(x)(/)=/(x) is continuous, where CiF, Y)

also has the compact-open topology.

It remains to show that p is a closed map. Let C be a closed subset of X.

Then piC) = {hx:x e C}. Let {hxJneA be a net in piC) such that hXn~>-hx

in HiX, G), where xn e C for each ne A. If x £ C, then there exists an

/in C(A", G) such that fox) é cl [/(C)]. But hXnif)^hxif) in G; we have
fixn)->fix) in G, hence fox) ë cl [/(C)], a contradiction. Hence xeC

and piC) is closed.

Remark 10. The hypothesis that A" is a ¿-space in Theorem 9 is

merely to assure the continuity of p. In fact, if HiX, G) is given the point-

open topology instead of the compact-open topology, the mapping p is

easily seen to be continuous without assuming that X is a ¿-space.

Suppose now that 8: X—>Y is a continuous map of a ¿-space X into a

¿-space Y. Define 0' : C( Y, G)->■ CiX, G) by setting d'ig)=g°d for each g in

C(F, G) into the corresponding constant function in C(A", G). Note that

if hx e HiX, G), then hx o 6' is in HiY, G). Hence we have a continuous

mapping   0"   of   HiX, G)   onto   HiY, G)   defined   by   Q"ihx)=hx°0'

for each hx e HiX, G). It is easy to verify that the following diagram

e
X-> Y

HiX, G) —-► HiY, G)

is commutative, where pz:Z-*H(Z, G) is the mapping of Theorem 9.
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Theorem 11. Suppose that X and Y are k-spaces. Every continuous

homomorphism h:C(Y, G)—>-C(A", G) which maps every constant function

on Y into the corresponding constant function on X, induces a unique

continuous mapping j of X into Y such that j'=h. Furthermore, if h is a

topological isomorphism, then the induced mapping j is a homeomorphism.

Proof. Let h' be the mapping of H(X, G) into H( Y, G) defined by

h'(hx)=hx° h for each hxe H(X, G). Since X and Y are ¿-spaces, px

and pY are homeomorphisms by Theorem 9. If we define j:X^>-Y by

setting j=pY ° A' ° Pxt then the above diagram shows that y is continuous.

Note that j(x)=y if and only if h(g)(x)=g(y) for each g eC(Y,G).

lfj':C(Y, G)^>-C(X, G) is the mapping defined by j'(g)=g °j for each

g e C(Y, G), it is easy to verify thatj'=h.

If r:X^>Y is any continuous mapping such that r(x)j^j(x) for some

x e A, then there exists an fe C(X, G) such that for(x))j^f(j(x)). Hence

r'^'f, and the uniqueness of / follows.

Now if h is a topological isomorphism, then/' is onto and one-to-one

(cf. [5, 10.2]), and/-1 is continuous. Hence y is a homeomorphism of X

onto Y, and the proof is completed.

As one may notice from the above proof, the introduction of the

mapping j depends solely on the homeomorphism of the maps px and

pY, and, as noted in Remark 10, the mapping p is always a homeomor-

phism if H(X, G) is endowed with the point-open topology which indeed

coincides with the compact-open topology if the domain space is discrete

[3]. With this remark, we can now prove Theorem 8 very easily; take

discrete topologies for the groups C( Y, G) and C(A", G) then apply the

proof of Theorem 11.

Remark 12. In fact, if we define an S-pair (A", G) in a weaker form,

(that is if we define (X, G) to be an S-pair if, for each closed subset C

of X and x £ C there exists an /in C(A\ G) such that fox) <£ ci[/(C)]),

then most of the results stated above, except perhaps Theorems 5 and 7,

hold.
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