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WALLMAN-TYPE COMPACTIFICATIONS
ON 0-DIMENSIONAL SPACES

LI  PI  SU1

Abstract. Let E be Hausdorff O-dimensional, 3> the discrete

space {0, 1}, and J' the discrete space of all nonnegative integers.

Every E-completely regular space X has a clopen normal base 3-

with X\Fe^ for each FeF. The Wallman compactification

oj(^) is ^-compact. Moreover, if an f-completely regular space

Xhas a countably productive clopen normal base &■ with X\Fe &-

for each FetF, then the Wallman space i}(&) is ^'-compact.

Hence, if X has such an &, and is an J^-realcompact space, then X

is ^-compact.

Recently, the relations between Stone-Cech compactifications and

Wallman compactifications, those between realcompactifications and

Wallman compactifications and those between is-compactifications and

Wallman compactifications have been studied by Frink [6], Njastad

[9], the Steiners [11], [12], Alo and Shapiro [1], [2], [3], [4], Piacun and

Su [10], and some others.

A topological space is said to be O-dimensional if it has a base con-

sisting of clopen (both closed and open) subsets of X. For other notations

and terminology see one of [1], [2], [3], [4], [10], [11] and [12], and

[8].
Let Jf be a base for closed subsets of E. Let A' be a T^-space. Let

Si#f) be the family of all subsets of X of the form/-1 IB] where for some

positive integer n,fe CiX, En) and BeJ^. According to the definition

of £-complete regularity (see [8]), X is L'-completely regular iff êi^C) is

a base for the closed subsets of X.

From now on we will let E be a T2 O-dimensional space with card E^.2.

According to [8], the following theorems are true:

Theorem (Mrówka).    The following three statements are equivalent:

(1) X is a O-dimensional T0-space.

(2) X is E-completely regular.

(3) X is ^-completely regular.
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Theorem (Mrówka). Let X be a compact, O-dimensional T0-space.

Then X is ^-compact and X is E-compact.

If J5" is a family of clopen subsets of X such that X\Fe F for each

F e F', then F is a base for the open sets of X iff !F is a base for the

closed sets of X. In the sequel we shall mainly be concerned with bases

which are rings (closed under the operations of taking finite unions and

finite intersections). We therefore make the following definition: F is

called a complementa! base on X iff all of the following are satisfied

(1) F is a family of clopen subsets of X.

(2) X\FeF for each F e F.

(3) F is a ring.

(4) J-7 is a base for closed sets of X.

It is obvious that any complemental base is a normal base. Also,

if X is ii-completely regular and if IF is a complemental base on E,

then SLF) is a complemental base on X. Since the family of all clopen

subsets of E is a complemental base, it follows that every /^-completely

regular space X has at least one complemental base. Conversely, if a

/"„-space X has a complemental base, then X is necessarily O-dimensional

and so, by Mrówka's Theorem quoted above, X is jfJ-completely regular.

In order to fix the notation, we repeat the construction of the Wallman

spaces co(F) and r\(F) which arise from a normal base !F. Thus, let

¡F be a normal base on X. Let ca(F) be the set of all J^-ultrafilters and

r¡(F) the set of all J^-ultrafilters with the ci.p. (countable intersection

property). We now topologize wLF) and r\LF) as follows: In mLF),

for each FeF we define the set F* = {& e œ(F):Fe 0}. Then the

set {F*:FeF} can be taken as a base for closed subsets of -»(J*7).

Similarly, in r¡(F), we define F** = {(V* e ti(F):Fe (J)*} for each

Fe F. wLF) and r\(F) with the described topologies are called Wallman

spaces. In fact w(F) is a Hausdorff compactification of X. (See [6],

[11].) Let </> be the natural embedding of X into coLF) (or r¡LF)) defined

by identifying <p(x) with the J^ultrafilter consisting of all FeF that

contain x, denoted by (Vx={FeF:xe F}. It is clear <9xeœLF) and

ri(F).

The following Lemmas A, B and C are easy to prove.

Lemma A.    Let F be a normal base on X. Then:

(a) (FxnF2)*=F*nF* ((FxnF2)** = F**nF**)forallFx,F2eF.

(b) <p(F) = 4>(X)C\F* (<f>(X)r\F**)for all F in F.
(c) clo(r>4>iF)=F* (cl^)4>(F)=F**).

The proof is similar to that of Lemma I in [1].

Since J-*" is a disjunctive family (see [1]) and X is Tx, the mapping <f>

is a one-one mapping of X onto the subspace <f>iX) of <x>iF) (r\LF)).
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According to Lemma A(b), <j> is both continuous and closed. Hence $

is a homeomorphism.

Theorem A. Let X be E-completely regular and let F be a comple-

mental base on X. Then Fr* = {F*:FeF} (F** = {F**:FeF}) is a

complemental base on w(F) (r\(F) resp.). Hence w(F) (r¡(F)) is E-

completely regular.

Proof. Observe that for each F eF, (9 e w(F)\F* iff F $6 iff

iX\F) e (9 iff 0 e (X\F)*. Therefore, for each FeF, co(F)\F* = (X\F)*.
It follows that F* is a complemental base on co(F). Similarly, F** is a

complemental base on r\(F). Since m(F) and r¡(F) are Hausdorff

spaces, the theorem is true.

Lemma B. In addition to the conditions in Lemma A, if F is countably

productive, then:

(a) For FnEF, n=l,2,- ■ ■ , (\J%=xFn)** = {Jn=iF** and

(CO \** CO

r]Fn) =nn*.
,1=1        / n=l

(b) If s/ is a F*- (F**-) ultrafilter (with the ci.p.) then <V =

{F:F*es/} (@* = {F:F** e 0}) is an F-ultrafilter (with the ci.p.).

And conversely.

The proof is similar to that of Theorem 1 in [4].

Theorem B. Let X be an E-completely regular space and ¡et F be a

complemental base on X. Then the Wallman compact ifi cat ion wLF) is

E-compact and also is ¿^-compact.

Proof. Theorem A implies that (o(F) is .E-completely regular. Now

apply Mrówka's theorems quoted above using the known fact that

co(F) is a compact Hausdorff space.

In general, we do not know that if the Wallman spaces co(F'), r¡(F')

of an E-completely regular space generated by the ring F' of all E-closed

subsets of X is E-completely regular. However according to Theorem A,

we have

Corollary A. If X is an E-completely regular space and if F is a

complemental base on X, then the Wallman spaces toÇF) and r\(F) are

E-completely regular.

If, in particular, E is either Jf., the discrete space of the nonnegative

integers, or 3>, the discrete space {0, 1}. An E-closed subset of X is a

subset A of X such that there is a positive integer n and a continuous

function / e C(X, En) such that A=fo1lF] for some closed subset F
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of E". Since F is clopen in En, each E-closed subset A of X, and X\A are

indeed E-clopen sets. Let Fx denote the family of all such E-clopen sets.

Then, by [8, (3.18)] !FX is a ring. It is easy to show that Fx is a comple-

mental base on X iff X is E-completely regular.

Corollary B. Let E be Jf or 3¡. For any E-completely regular space

X, the Wallman spaces co(Fx), r\LFx) arising out of the ring Fx of E-

closed (indeed it is E-clopen) subsets of X is E-completely regular.

In a recent paper Chew [5] has given the following characterization

of ^-compactness. We recall it here.

Theorem C.    In a O-dimensional space X, the following are equivalent :

(i) X is jV -compact.

(ii) Every clopen ultrafilter on X with the ci.p. is fixed, (i.e., has non-

empty intersection).

(iii) The collection of all the countable clopen coverings ofX is complete.

According to Frolik [7], let a.= {<%} be a collection of coverings of a

space X. An a-Cauchy family 'S is a filter of subsets of X such that for

every °U e a, there exist U in % and G in 'S with [/=> G. The collection a

is complete iff 'S is fixed (i.e., C\'S^.0) for each^O-Cauchy family 'S.

The following lemmas are needed to show that there is a Wallman

space r\(F) that is ^-compact.

Lemma C. Let X be E-completely regular and let F be a comple-

mental base on X which is countably productive. Then every !F**-ultrafilter

with the ci.p. is fixed.

Proof is straightforward from Lemma B(b).

Lemma D. Let ¡M be a base consisting of clopen subsets of X. If the

collection ß of all countable coverings from 3S is complete, then the collection

a of all countable clopen coverings is complete.

Proof. Let si be an a-Cauchy family, and V* e ß be arbitrary. Since

/?<= a> 1T e a, and si is an a-Cauchy family, there are Kef, and A e si

such that V=> A. Hence si is a /3-Cauchy family so that f}si¿¿0.

Lemma E. Let X be an E-completely regular space and let Fi be a

complemental base on X. Then the collection ß of all countable clopen

coverings of X from F¡ is complete iff every F-ultrafilter with the ci.p.

is fixed.

Proof. Necessity. Let si be an ultrafilter of F with the ci.p. Suppose

that si is not a ß-Cauchy family. Then there would be a "V e ß such that

each FjÊf does not meet some member of si, namely, At. (For since
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si is an ultrafilter, if Vi meets each member of si, then Vt e si. Thus,

si would be a /3-Cauchy family.) Hence Vf^X\Ai for each /=1, 2, • • • .

Then Z=U£i V(=n^<=\Jti {X\A^X\f)ZiAt. This implies
C\fLxAi=0. This contradicts the fact that si has the ci.p. Therefore,

si is a /3-Cauchy family, and f]si^0.

Sufficiency. Let 'S be a /3-Cauchy family. Then there is a ^-ultrafilter

si containing 'S. Since 'S is a /3-Cauchy family and since 'S^si, then

si is a /3-Cauchy family. Moreover, suppose that Ax, A2, • • • , are in si

and have empty intersection. Then \Jf=x(X\A¡)=X, and "f"0={X\Ai:

i=l, 2, • • • }<=áf is in ß. This would contradict the fact that si is a

/3-Cauchy family. Hence ¿a/ is an ultrafilter with the c.i.p. and f]si^0.

Therefore fl^-^0.

Theorem D. Let X be an E-completely regular space and let F be a

complemental base on X which is countably productive. Then the Wallman

space r¡(F) is J/-compact.

Proof. By Theorem A, F** is a complemental base on r¡(F).

Lemma C says that every J-r**-ultrafilter with c.i.p. is fixed. Combining

this with Lemmas D and E and Theorem C, i](F) is yf-compact.

Note that an E-completely regular space is a Tychonoff space. Com-

bining Theorem 3 of [4], and Theorem D, we have

Corollary C. Let X be an E-completely regular space, let F be a

complemental base on X which is countably productive and suppose that

X is F-realcompact. Then X= r\(F) and so X is J/ -compact.

Remarks. (1) Any discrete space has a complemental base which is

countably productive.

(2) If X=^V, then the family Fx of all E-closed subsets which indeed

is the family of all subsets is a complemental base which is countably

productive. By [4, Theorem 3] ■r](F) = vX=Jf. However co(F) = ßX.

Hence r¡(F) is ./T-compact but it is not ^-compact.
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