INEQUALITIES FOR A PERTURBATION THEOREM OF PALEY AND WIENER

ROBERT M. YOUNG

ABSTRACT. A classical theorem of Paley and Wiener states that the set of functions $\{e^{i\lambda_n t}\}_{m=-\infty}^{\infty}$ forms a basis for $L^2(-\pi, \pi)$ whenever the following condition is satisfied:

(*)
$$\|\sum c_n(e^{i\lambda_n t}-e^{int})\|^2 \le \theta^2 \sum |c_n|^2$$
 $(0 \le \theta < 1).$

It is known that (*) holds whenever λ_n is real and $|\lambda_n - n| \le L < \frac{1}{4}$ $(-\infty < n < \infty)$, and may fail to hold if $|\lambda_n - n| = \frac{1}{4}$.

In this note we show, more generally, that the condition $|\lambda_n - n| < \frac{1}{4}$ is also insufficient to ensure (*).

1. Introduction. One of the fundamental results from the theory of nonharmonic Fourier series states that the functions $e^{i\lambda_n t}$ $(-\infty < n < \infty)$ form a basis for $L^2(-\pi, \pi)$ if they satisfy an inequality of the form

$$\|\sum c_n(e^{i\lambda_n t}-e^{int})\|^2 \le \theta^2 \sum |c_n|^2$$

for some θ ($0 \le \theta < 1$) and all finite sequences $\{c_n\}$ [7, p. 109]. It is well known [8, p. 210] that condition (1) holds whenever

$$|\lambda_n - n| \le L < (\log 2)/\pi$$
 $(-\infty < n < \infty).$

In another direction, Levinson showed [6, p. 48] that if

$$|\lambda_n - n| \le L < \frac{1}{4},$$

then every function in $L^2(-\pi, \pi)$ has a nonharmonic series expansion $f \sim \sum c_n e^{i\lambda_n t}$ which is equiconvergent with its ordinary Fourier series over any interval $[-\pi + \varepsilon, \pi - \varepsilon]$ for any positive ε . For λ_n real, the question of whether (2) implies (1) was answered in the affirmative by M. I. Kadec [5].

The purpose of this note is to show that the condition $|\lambda_n - n| < \frac{1}{4}$ is *not* sufficient to imply (1). Our proof is based on the result [6, p. 67]

Received by the editors May 3, 1973 and, in revised form, July 25, 1973.

AMS (MOS) subject classifications (1970). Primary 42A60; Secondary 42A64.

Key words and phrases. Nonharmonic Fourier series, frames, functions of exponential type.

that if $\{\mu_n\}$ is given by

(3)
$$\mu_n = n - \frac{1}{4}, \quad n > 0, \\ = 0, \quad n = 0, \\ = n + \frac{1}{4}, \quad n < 0,$$

then $\{e^{i\mu_n t}\}_{n\neq 0}$ is closed in $L^2(-\pi, \pi)$, and therefore (1) cannot hold with $\lambda_n = \mu_n$. Using the same example, Ingham had already established in [4, p. 378] that the inequality

$$A \sum |c_n|^2 \le \| \sum c_n e^{i\mu_n t} \|^2$$

cannot hold for any positive A, thereby also showing that (1) fails for this choice of λ_n . In this paper, the following theorem is established.

THEOREM. If $\{\mu_n\}$ is given by (3) and if $\{\lambda_n\}$ is a sequence of complex numbers for which $|\lambda_n - \mu_n| \to 0$ $(n \to \pm \infty)$, then (1) cannot hold.

COROLLARY. The condition $|\lambda_n - n| < \frac{1}{2}$ is not sufficient to ensure (1).

2. Fourier frames. Duffin and Schaeffer [3, p. 343] have termed a set of functions $\{e^{i\lambda_n t}\}$ a frame over the interval $(-\gamma, \gamma)$ if there exist positive constants A and B such that

$$(4) A \int_{-\gamma}^{\gamma} |g(t)|^2 dt \leq \frac{1}{2\pi} \sum_{n} \left| \int_{-\gamma}^{\gamma} g(t) e^{i\lambda_n t} dt \right|^2 \leq B \int_{-\gamma}^{\gamma} |g(t)|^2 dt$$

for every function g(t) in $L^2(-\gamma, \gamma)$. It follows from a theorem of Paley and Wiener [7, p. 13] that an equivalent characterization is that the inequalities

(5)
$$A \int_{-\infty}^{\infty} |f(x)|^2 dx \le \sum_{n} |f(\lambda_n)|^2 \le B \int_{-\infty}^{\infty} |f(x)|^2 dx$$

hold for every function f which is entire of exponential type γ and such that $f(x) \in L^2(-\infty, \infty)$. It is clear from (4) that a frame is a complete set of functions in $L^2(-\gamma, \gamma)$.

The following lemmas were established in [3, pp. 346, 360].

LEMMA 1. The removal of a vector from a frame leaves either a frame or an incomplete set.

LEMMA 2. If $\{e^{i\lambda_n t}\}$ is a frame over $(-\gamma, \gamma)$, then there exists a $\delta > 0$ such that $\{e^{i\gamma_n t}\}$ is a frame over the same interval whenever $|\gamma_n - \lambda_n| \leq \delta$.

3. **Proof of the Theorem.** Let us suppose to the contrary that (1) does hold for some θ , $0 \le \theta < 1$. Then $\{e^{i\lambda_n t}\}$ is a frame over the interval $(-\pi, \pi)$ [1]. By Lemma 2, there is a $\delta > 0$ such that $\{e^{i\gamma_n t}\}$ is a frame over $(-\pi, \pi)$ whenever $|\gamma_n - \lambda_n| \le \delta$. Since $|\lambda_n - \mu_n| \to 0$, it follows that, for

some sufficiently large N, the set

$$\{e^{i\lambda_n t}\}_{|n| \leq N} \cup \{e^{i\mu_n t}\}_{|n| > N}$$

is a frame over the same interval.

It is well known [2, p. 98] that if f is entire of exponential type γ and if $f(x) \in L^2(-\infty, \infty)$, then

$$|f(x+iy)|^2 \le e^{2\gamma|y|} \int_{-\infty}^{\infty} |f(x)|^2 dx.$$

It follows from (5) that the set

$$\{e^{i\lambda_n t}\}_{n=-N}^N \cup \{e^{i\mu_n t}\}_{n=-\infty}^\infty$$

is also a frame over $(-\pi, \pi)$. Since $\{e^{i\mu_n t}\}_{n\neq 0}$ is closed in $L^2(-\pi, \pi)$, repeated application of Lemma 1 shows that the set $\{e^{i\mu_n t}\}_{n\neq 0}$ must be a frame over $(-\pi, \pi)$. Again invoking Lemma 2, we get $\varepsilon > 0$ such that the set $\{e^{\pm i\gamma_n t}\}_{n=1}^{\infty}$ is a frame over $(-\pi, \pi)$ whenever $|\gamma_n - \mu_n| \leq \varepsilon$. We complete the proof by showing that this leads to a contradiction.

Let us form the function $F(z) = \prod_{n=1}^{\infty} (1-z^2/\gamma_n^2)$. Then F is entire of exponential type π [2, p. 186], and it was shown by Levinson [6, p. 49] that if $\{\gamma_n\}$ satisfies the inequality $|\gamma_n - n| \le L < \frac{1}{4}$, then $F(x) \in L^2(-\infty, \infty)$. Therefore, under these conditions, $\{e^{i\gamma_n t}\}_{n \ne 0}$ is not closed in $L^2(-\pi, \pi)$ and therefore cannot possibly be a frame.

REFERENCES

- 1. R. P. Boas, Jr., A trigonometric moment problem, J. London Math. Soc. 14 (1939), 242-244. MR 1, 52.
 - 2. ——, Entire functions, Academic Press, New York, 1954. MR 16, 914.
- 3. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. MR 13, 839.
- 4. A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), 367-379.
- 5. M. I. Kadec, *The exact value of the Paley-Wiener constant*, Dokl. Akad. Nauk SSSR 155 (1964), 1253-1254=Soviet Math. Dokl. 5 (1964), 559-561. MR 28 #5289.
- 6. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., vol. 26, Amer. Math. Soc., Providence, R.I., 1940. MR 2, 180.
- 7. R. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R.I., 1934.
- 8. F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., Functional analysis, Ungar, New York, 1955. MR 15, 132; 17, 175.

DEPARTMENT OF MATHEMATICS, OBERLIN COLLEGE, OBERLIN, OHIO 44074