
proceedings of the
american mathematical society
Volume 43, Number 2, April 1974

INEQUALITIES  FOR A PERTURBATION  THEOREM
OF  PALEY  AND  WIENER

ROBERT  M.   YOUNG

Abstract. A classical theorem of Paley and Wiener states that

the set of functions {eiXn'}n=-œ forms a basis for L2( — tt, it) when-

ever the following condition is satisfied:

(*)        II2 cn(ea"' - e"")]]' è 02 I |c„|2       (0 ^ 0 < 1).

It is known that (*) holds whenever Xn is real and |A„—n\^L<\

( — oo<»i<oo), and may fail to hold if |AB—n|=J.

In this note we show, more generally, that the condition |Ân—n\ <i

is also insufficient to ensure (*).

1. Introduction. One of the fundamental results from the theory

of nonharmonic Fourier series states that the functions e'*»* (—oo<

n<oo) form a basis for L2( —-r, it) if they satisfy an inequality of the

form

(O \\2cnié^-eint)\\2^e22\cn\2

for some 6 (Oi£0<l) and all finite sequences {c„} [7, p. 109]. It is well

known [8, p. 210] that condition (1) holds whenever

\Xn - n\ < L < (log 2)/tt        (- oo < n < oo).

In another direction, Levinson showed [6, p. 48] that if

(2) \Xn - n\ <: L < I

then every function in L2i—-n, tt) has a nonharmonic series expansion

_/~2 cne1Ár>t which is equiconvergent with its ordinary Fourier series

over any interval [—•-t + ê, tt—e] for any positive e. For Xn real, the

question of whether (2) implies (1) was answered in the affirmative

by M. I. Kadec [5].
The purpose of this note is to show that the condition \Xn—«|<J

is not sufficient to imply (1). Our proof is based on the result [6, p. 67]
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that if {pn} is given by

pn = n — I,       n>0,

(3) =0, n - 0,

= n + i,       n < 0,

then {e'^'ln^o >s closed in L2(—tt, tt), and therefore (1) cannot hold with

Xn=pn. Using the same example, Ingham had already established in

[4, p. 378] that the inequality

^IcJ^ll^c^ll2

cannot hold for any positive A, thereby also showing that (1) fails for this

choice of Xn. In this paper, the following theorem is established.

Theorem. If {pn} is given by (3) and if {Xn} is a sequence of complex

numbers for which \Xn—pn\-+0 («->± oo), then (1) cannot hold.

Corollary.    The condition \Xn—«|<¿ is not sufficient to ensure (1).

2. Fourier frames. Duffin and Schaeffer [3, p. 343] have termed a

set of functions {eUn<} a frame over the interval (—y, y) if there exist

positive constants A and B such that

(4) A[y\git)\2dt^^2   \\{t)é^dt^B\y\git)\2dt
J—y 2tt   n    J-y J—y

for every function git) in L\—y, y). It follows from a theorem of Paley

and Wiener [7, p. 13] that an equivalent characterization is that the

inequalities
/•OO /*00

(5) A\    \fix)\2dxí%\fiXn)\2ÍB\    \fix)\2dx
•»—oo n J—oo

hold for every function / which is entire of exponential type y and such

that/(x) eL2(—oo, oo). It is clear from (4) that a frame is a complete

set of functions in L2(—y, y).

The following lemmas were established in [3, pp. 346, 360].

Lemma 1. The removal of a vector from a frame leaves either a frame

or an incomplete set.

Lemma 2. If {e**"*} is a frame over (—y, y), then there exists a r5>0

such that {ety"i} is a frame over the same interval whenever \yn — Xn\^d.

3. Proof of the Theorem. Let us suppose to the contrary that (1)

does hold for some 6, O^0<1. Then {e"B<} is a frame over the interval

(—77,7r) [1]. By Lemma 2, there is a ¿>0 such that {e'7"'} is a frame over

(—77,7r) whenever \yn—XJ^ô. Since \Xn—mJ-*0, it follows that, for
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some sufficiently large N, the set

{e"»'}|»|SJV U {^}|n|>7V

is a frame over the same interval.

It is well known [2, p. 98] that iff is entire of exponential type y and

if fix) e L2(— oo, oo), then
/"OO

|/(x + ¿jOI" ̂  e""*1       |/(x)|2c.x.
J—OO

It follows from (5) that the set

is also a frame over (—it, tt). Since {eiflnt}n^0 is closed in L2(—77,77),

repeated application of Lemma 1 shows that the set {e,,lnt}nit0 must be a

frame over (—w, tt). Again invoking Lemma 2, we get £>0 such that the

set {e±ty"'}ñ=x is a frame over (—77,77) whenever \yn—pn\=s. We complete

the proof by showing that this leads to a contradiction.

Let us form the function F(z)=rj"=i (\—z2\y\). Then F is entire of

exponential type 77 [2, p. 186], and it was shown by Levinson [6, p. 49]

that if {yn} satisfies the inequality \yn—n\^L<l, thenF(x) eL2(—00, 00).

Therefore, under these conditions, {el7n<}„_¿0 is not closed in L2(—77,77)

and therefore cannot possibly be a frame.
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