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IMMERSION IN THE METASTABLE RANGE
AND  2-LOCALIZATION

HENRY  H.   GLOVER AND   GUIDO  MISLIN1

Abstract. Our purpose is to study immersion properties in the

metastable range using the techniques of localization of homotopy

types. The main theorem states that immersion of a manifold M in

euclidean space in the metastable range depends only upon the

homotopy type M2, the localization of Mat the prime 2.

Introduction. It follows from [2] that in the metastable range immersion

of a closed manifold depends only upon its homotopy type. One has

Theorem 0.1. Let M and N be homotopy equivalent closed differentiable

manifolds of dimension n. Suppose M immerses in Rn+k for some k^.

[n/2]-|-2. Then so does N.

Namely if /: M^-Rn+k is an immersion with normal bundle v, then one

can extend/ to an immersion of the total space F(j») of v, /:F(v)~>-Ä"+*.

The zero section s : Af—>-F(i») is an embedding. Iff?: A—►/Vf denotes a homo-

topy equivalence, then, by [2], sd is homotopic to an embedding since

dim£(i») —dim A=/c^[«/2]-r-2; denote such an embedding by 6 :N-*-Eiv).

Then/ô immerses N into Rn+k.

Our purpose is to study the immersion properties in the metastable

range using the technique of localization of homotopy types ([3], [8]),

and to prove a stronger form of Theorem 0.1 involving only the homotopy

type of M at the prime 2, denoted by M2. In order to be able to localize

M at 2 we will suppose that its homotopy type is simple, meaning that

M is connected and that irxM operates trivially on n#M. We prove

Theorem 0.2. Let M and N be connected, simple, orientable and closed

differentiable manifolds of dimension n whose 2-localizations M2 and N2 are

homotopy equivalent. Suppose M immerses in Rn+k for some k^. [rt/2] + l.

Then N immerses in /r+2t*/21+1.

Corollary 0.3. Let M and N be as in 0.2 and assume that N is a

■n-manifold. Then M immerses in /r+2[(?l+2)/4]+1.
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In particular this gives the following immersion theorem for generalized

spherical space forms (compare Theorem C of [6] in the case of Lens

spaces).

Corollary 0.4. Let A/=22n+1/G\ where G is a finite abelian group of

odd order operating fixed point free and smoothly on the homotopy sphere

E**«. Then M immerses in ¿X*<«+1>'*\

1. Localization. We will use the notation and results of [3] and [8].

If A" is a connected simple CW homotopy type then Xp denotes its p-

localization (/» a prime or 0); there are canonical maps X-^-Xp respec-

tively A"s—>-A"0. We will need the following basic result of [3].

Theorem 1.1. Let W be a connected finite C W complex and X a

connected simple CW complex of finite type. Then the set of pointed homo-

topy classes IW, X] is the pullback of the diagram of sets

{lW,XP]^lW,X0]\peP},

P denoting the set of primes.

We will use this theorem in a situation where X is simply connected.

In this case we do not have to distinguish between free and pointed

homotopy classes of maps.

2. Some facts about SO and SF. In this section we reformulate some

known results about the special orthogonal groups and SFiq), the monoid

of degree one pointed maps of S". By suspension there is an inclusion

SFiq)c=SFiq+l). Let SF=\J SFiq). The canonical maps SOiq)^SFiq)

and SO~>-SF induce a map of pairs

6:iSO,SOiq))^iSF,SFiq)).

By [5, 3.2] one has

Lemma 2.1. The canonical map Q#:nniSO, SOiq))^irniSF, SFiq)) is

an isomorphism if n^2q—2.

In accordance with §1 we write SOp for the /»-localization of SO. The

reader should not confuse SOp with SOip).

Lemma 2.2.    Let q be an odd integer and p an odd prime. Then

(i) irk(SOp, SO(q)p)=0for k^2q;

(ii) nkiSFp, SFiq)v)=0for k<ip-l)iq+l)-2.

Proof. The first result follows by the relative Hurewicz theorem from

HkiSOp,SOiq)v:Z)=0 for k^2q. The second result follows from the

isomorphisms   ■nkSFiq)^LTrk+qS"  and   ^SF^-n^S0   and   the   fact   that
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i^+qS^p-^-in^S0),, is an isomorphism (/» andqodd)if k<ip—l)iq+l)—2

and surjective for k = ip—l)iq+l)—2.

We will use the following lemma on liftings in fiber spaces which is

proved in [9, 3.2].

Lemma 2.3.    Consider the following diagram of connected CW complexes

in which the columns are fibrations:

tx —► t2

h\ K

e

Ex      > E2

*1 |-

^—►5. 2

Suppose f#:TrkFx-^-nkF2 is an isomorphism for k<n and suppose given a

CW complex X of dimension n together with maps g:X^-Bx, h:X^-E2 such

that bg=p2h. Then there exists a map g: X—>EX with pxg—g.

3. Geometric dimension. Let A" be a connected finite CW complex.

If a 6 [A", BSO] = KOiX) is an oriented stable bundle over X, then we

denote by Jen, olb, respectively Jonp, the canonical image of a in [A", BSF],

[A", BSOp], respectively [A", BSFP]. As usual, we define the geometric

dimension of a e [A", BSO] by

gd(a) = min{; | a e im([A", BSOij)] -> [A", BSO])}.

Since it ¿SO, SOij))=0 for /<;', we see that gd(a)^dim X. We also

define, for ß e [A", BSF],

gdiß) = miníj | ß e im([A", BSF(j)] - [X, BSF])}.

Again tTiiSF, SFij)) = 0 for i<j, so gd(/3)^dim X. Similarly we define,

for y e [A", BSOp], respectively ô e [A", BSGP],

gdiy) = min{j \ y e im([A", BSOij),] - [X, BSO,])},

gd(d) = min{; | ô e im([A", BSF(j),] -* [A", BSFP])}.

In the following, X will always denote a finite connected CW complex.

Lemma 3.1. Let a e [A", BSO] and dim X=n. Then for p odd, gd(a „) rg

2[«/4]+l.

Proof. By Lemma 2.2, iSOP, 5,0(2[«/4] + l)/)) is 4[/i/4]+2 connected.

Since 4[rt/4]+2^«-l we see that //!(A"; n^QSO,, 5O(2[n/4] + l)))))=0

for all / and hence every map aB:X->-BSOp lifts to ÄSO(2[/7/4] + l)P.

Hence the result.
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Recall that n is any positive integer and p is any odd prime. We next

define an integer £(«,/») by the equation

[nlip - 1)] + ein,p) = min{2; + 1 | 2; + 1 = Un + \)¡{p - 1)) - 1}.

Notice that e(n,/»)=0, 1 for all such n and p.

Lemma 3.2. Let ß e [A", BSF], dim X=n, andp be any odd prime. Then

gdißP)<:lnlip-l)] + ein,p).

Proof.    iSFP, SFHnlip-l)]+ein,p))p) is

ip-l)ilnlip-l)] + ein,p) + l)-2

connected by Lemma 2.2. Since

ip - l)Hnlip - 1)] + sin,p) + 1) - 2 £ n - 1

we see that

S*iX; ití-i(SFp, SFUnlp] + ein,p))P)) = 0   for all i.

Hence the result.

Lemma 3.3. Let a e [A", BSO], dim X=n, and suppose there exists a

k>ln/2] such that gdiJa.)<:k. Then gd(a)<A:.

Proof. Since gd(/a)^/t it follows by Lemma 2.3 that we can lift

a:X-+BSO into BSOik) provided that can-.n^SO, S0(/t))-^(SF, 5F(/c))
is an isomorphism for /<«. But this is the case by Lemma 2.1, since

k> ln¡2] and therefore 2k-2^n-1.

Lemma 3.4. Let ß e IX, BSF]. If max{gd(/9B)|/» eP}^2k+l, then
gdiß)^2k+l.

Proof.   Notice that

BSF(2k + I) ̂  u BSFi2k + l)„
veP

since TTiBSFi2k+1) is finite for all /. Hence the result.

Proposition 3.5. Let a. e [A", BSO], dim X=n, k> [n/2] and gd(/oc2)<

k. FÄe«gd(a)-g2[rV/2]+l.

Proof. By hypothesis gd(/a2)-^rC^2[/c/2]+l and, by Lemma 3.2,

gd(/a„)^[«/2] + £(/i,3)^2[Á:/2]-|-l for all odd primes p. Hence 3.4

implies that gd(Ja)^2[/c/2] + l. Since 2[Ä:/2] + l^A:>[n/2] we conclude

by 3.3 thatgd(a)^2[Ar/2] + l.

4. The proof of Theorem 0.2 and corollaries. For a connected closed

differentiable   manifold   M  denote   by  riM) e [Af, BO] = KOiM)  the
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stable tangent bundle and by v(M)=—r(M) the stable normal bundle.

The following proposition is well known in the corresponding "global"

situation [1, 3.6].

Proposition 4.1. Let M and N be connected, simple and closed differ-

entiable manifolds and q> : N2—>-M2 a homotopy equivalence. Then

cp * Jv(M)2 = Jv(N)2

in IN2,BF2]^IN,BF2].

Proof. Suppose cp * Jv(M)2 = w^Jv(N)2. Let Jv(N)e IN,BF] be the

stable normal fibration. Since BF^J~Jpep BFP we can define an element

6 e IN, BF] by giving dp eJv(N)P for p odd and 62=w. Note that 6 =

Jv(N). We want this to lead to a contradiction by showing that the Thorn

complex Ne is ¿-reducible. For a e [A, BF] we define (Npy* in the obvious

way: represent olp by the ¿¿-fibration pr:Ep-^-Np, k^dim M=dim N;

then (N,)*" is the 5-type of the mapping cone of pr. There is a canonical

¿-map (Na)fi—»-(A„)"" which is an ¿"-equivalence since it induces an iso-

morphism in homology. We call Nx ¿"-reducible at p if the (/»-local)

top cell of (Npy° splits off stably. Clearly Nx is ¿"-reducible if and only if it

is ¿"-reducible at/» for all primes/» (apply Theorem 1.1). Since 8p=Jv(N)p

for/» odd we see that A9 is ¿-reducible at all odd primes. Further (N2)e^ =

(N2)e^(M2)JHMh and hence Ne is ¿-reducible at 2. We conclude that Ne

is ¿-reducible. But by a theorem of Spivak [7] this implies that 6=Jv(N)

contradicting our assumption.

We can now prove our theorem. Let M and N be as stated in Theorem

0.2. Denote by f (A/) the unique lift of r(M) : M^BO^BSO x RPœ to

BSO, the universal cover of BO, and let v(M)= -r(M) e KSO(M) be the

oriented stable normal bundle. Since M immerses in Rn+k we have

gd(7i»(M)2)^gd(v(A/))-^/V. Let cp:N2-^-M2 be a homotopy equivalence.

By Proposition 4.1, <p * Jv(M)2=Jv(N)2 and hence k<p * Jv(M)2=kJv(N)2

for k:BSF2-^BF2 the canonical map. Since k is a 2-fold covering up to

homotopy, with covering transformations homotopic to the identity,

every homotopy class into BF2 which lifts to BSF2 lifts in a unique way.

Hence we have q>*Jv(M)2=Jv(N)2. We conclude that gd(Jv(N)2)^

gd(Jv(M)2)^k, and, by Proposition 3.5, gd(i?(A))<2[Â:/2]-|-l. By the
theorem of Hirsch [4] this implies that N immerses with codimension

2[*/2]+l.
The Corollary 0.3 follows immediately by observing that A immerses

with codimension 1, in case A is a 7r-manifold. We can therefore apply

the theorem with k = In¡2] +1.

For Corollary 0.4 one uses that the covering projection 22"+1—>-/V/

induces an equivalence S2nfl=^2, since G is of odd order; notice that M
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is simple since the operations of G are all homotopic to the identity. The

result now follows from Corollary 0.3 by observing that £2n+1 is a tr-

manifold.
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