A SHORT PROOF OF THE CLASSICAL EDGE OF THE WEDGE THEOREM

ERIC BEDFORD

ABSTRACT. By solving the δ -equation and using Bochner's theorem on tube domains, one may derive an easy proof of the edge of the wedge theorem in 2 variables.

Let \mathbb{R}^n_+ and \mathbb{R}^n_- denote the (open) positive and negative cones in \mathbb{R}^n . The classical edge of the wedge theorem states that a function which is analytic on the set $\{z \in \mathbb{C}^n : (\operatorname{Re} z_1, \dots, \operatorname{Re} z_n) \in \mathbb{R}^n_+ \cup \mathbb{R}^n_-\}$ and continuous where $(\operatorname{Re} z_1, \dots, \operatorname{Re} z_n) = (0, \dots, 0)$ can be continued holomorphically to the whole space \mathbb{C}^n . We prove a slightly weaker version of this.

THEOREM. Let $W = \{z \in \mathbb{C}^2 : \text{Re } z \in \mathbb{R}^2_+ \cup \mathbb{R}^2_-\}$. If $f \in \mathbb{C}^2(\mathbb{C}^2)$ and if f is analytic on W, then f can be continued analytically to \mathbb{C}^2 .

PROOF. Define two (0, 1)-forms:

$$h_1(z) = \bar{\partial}f(z)$$
, Re $z_1 > 0$,
= 0, otherwise;
 $h_2(z) = \bar{\partial}f(z) - h_1(z)$.

Observe that $\partial f/\partial \bar{z}_j$ and grad $(\partial f/\partial \bar{z}_j)$ vanish on W for j=1, 2 and therefore on the set $\{z: \text{Re } z_1=0\}$. Thus, the forms h_j are continuously differentiable, and $\partial h_j=0$ for j=1,2.

Let g_j be functions such that $\delta g_j = h_j$ for j = 1, 2. Then g_1 is analytic on the set $W_1 = \{(z_1, z_2) : \text{Re } z_1 < 0 \text{ or Re } z_2 > 0\}$, and it follows from Bochner's theorem on tube domains that there is an entire analytic continuation G_1 of g_1 . Similarly there is an entire function G_2 continuing the function g_2 from the set $\{z : \text{Re } z_1 > 0 \text{ or Re } z_2 < 0\}$. Thus $F = f + (G_1 - g_1) + (G_2 - g_2)$ is the desired analytic continuation of f.

REMARK. The edge of the wedge theorem in C^n (n>2) may be deduced from the two-dimensional result along the following lines. If a function satisfies the hypotheses of the above Theorem in C^n , then it also satisfies them on each complex 2-plane through $(1, 1, \dots, 1)$ and the origin.

Received by the editors March 13, 1973.

AMS (MOS) subject classifications (1970). Primary 32D15.

By the Theorem for C^2 , the function can be continued analytically to each of these complex 2-planes. The extension defined in this way can be shown to be analytic in C^n .

REFERENCES

- 1. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N.J., 1966. MR 34 #2933.
- 2. W. Rudin, Lectures on the edge-of-the-wedge theorem, CBMS Regional Conference Series in Math., no. 6, Amer. Math. Soc., Providence, R.I., 1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104