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CHARACTERIZATIONS OF NORMAL STRUCTURE

TECK-CHEONG LIM!

ABSTRACT. The notions of asymptotic center for a decreasing net
of sets and asymptotic normal structure are defined and several
characterizations of normal structure are proved. Among these,
the problem of whether complete normal structure is equivalent
to normal structure is answered in the affirmative.

1. Introduction. Belluce and Kirk [1] first proved that if X is a non-
empty weakly compact convex subset of a Banach space and if K has
complete normal structure, then every family of commuting nonexpansive
self-maps on K has a common fixed point. Later, Holmes and Lau [6]
extended this theorem to left reversible topological semigroups of non-
expansive self-maps (with some additional continuity assumption) of
such a set K. In [7], the author proved, without showing the equivalence
of normal structure and complete normal structure, that Belluce and
Kirk’s theorem holds for K which is weakly compact and assumed only
to have normal structure. However, the method used in [7] is not directly
applicable to improving Holmes and Lau’s result. In the present paper,
we shall extend further the ideas contained in [7] and prove, as a corollary,
that complete normal structure is equivalent to normal structure for
weakly compact convex sets in Banach spaces (more generally, for weakly
compact sets in locally convex Hausdorff linear topological spaces). A
slightly neater proof of Holmes and Lau’s theorem is then given.

2. Preliminaries and notations. Throughout this paper, E will denote
a separated, locally convex linear topological space and Q a (fixed) family
of continuous seminorms which generate the topology of E. For any
p € Q@ and Ac E, the symbol §,(4) will denote the p-diameter of 4, that is

Presented to the Society, June 26 1973; received by the editors July 2, 1973.

AMS (MOS) subject classifications (1970). Primary 47H10, 46B99.

Key words and phrases. Normal structure, asymptotic center, asymptotic normal
structure, complete normal structure, nonexpansive mapping, fixed point, topological
semigroup.

! Part of this research was conducted while the author held an Izaak Walton Killam
Memorial Scholarship at Dalhousie University under the supervision of Professor
Michael Edelstein; it was also prepared while the author was at the Séminaire de
Mathématiques Supérieures (Fixed point theory and its application), Université

de Montréal.
© American Mathematical Society 1974

313




314 TECK-CHEONG LIM [April

d,(A)=sup{p(x—y):x,y € A}, Co A will denote the convex hull of A4.
B, (x, r) (B,[x, r]) will denote the open (closed) ball with center at x and
p-radius r. If x,,---.x, €E, %, will denote the element n~* 37, x,.
For A< E, cl(4) will denote the closure of 4.

If H, K are nonempty subsets of E, H being bounded, then for each

p €0, we define:
r,(H, x) = sup{p(x — y):y € H},
r,(H, K) = inf{r,(H, x):x € K},
¢, (H,K) = {xeK:r,(H,x) =r,(H, K)}.

Let K be a convex subset of E. We say that K has normal structure with
respect to Q ([1], [6], [8]) if, given any bounded (closed) convex subset W
of K which contains more than one point, then, for every p € Q with
0,(W)>0, there exists x € W such that sup{p(x—y):y € W}<4,(W) or,
equivalently, € (W, W) is a proper subset of W.

Let K be a nonempty bounded closed convex subset of E. We say that
K has complete normal structure ([1], [6]) with respect to Q, if every
closed convex subset W of K which contains more than one point and
every p € Q with §,(W)>0 satisfy: For any decreasing net {W,:a € 4}
of nonempty subsets of W with the property that r,(W,, W)=r,(W, W)
for all € 4, it is the case that the closure of |J {€,(W,, W):a € A} is
a nonempty proper subset of W.

Let C be a nonempty subset of E and {W,:a € A} be a decreasing net
of nonempty bounded subsets of E. For each x € C, each « € 4 and each
p €0, define

rpa(%) = sup{p(x — y):y e W,},
r(x) = inf{r, 4(x):p € A} and r, =inf{r,(x):x e C}.

The set {x € C:r,(x)=r,} (the number r,) will be called the asymptotic
center (asymptotic radius) of {W,:a € 4} in C with respect to p and
denoted by L€, ({W,:a € A}, C)(ar,({W,:a € A}, C)). This definition is
a generalization of that in [4], [S] and [7].

A convex set C of E is said to have asymptotic normal structure with re-
spect to Q if, given any bounded (closed) convex subset W of C which con-
tains more than one point, given any decreasing net of nonempty subsets
{W,:a € A} of W and given any p € Q such that 6 ,(W)>0, the asymptotic
center of {W,:a € A} in W with respect to p is a proper subset of W.

Some basic properties of r(x) and asymptotic centers are collected as
follows:

1. For each x € C and each p € Q, {r,..(x):« € A} is a decreasing net
in R with limit r,(x). (A net {x,:« € A} in R is called decreasing if x,=x;
whenever «=4.)

2. For each p € Q, r,(x)=0if and only if {W,:a € A}—>"x, i.e. for every
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ball B,(x,r) of x with r>0, there exists an « such that W,= B, (x, r).

3. For each pe Q, |r,(x)—r,(»)|Sp(x—y) for every x, y € A. This
follows from (1) and the fact that |r, ,(x)—r, (»)|=p(x—y) for every
o€ A.

4. Suppose that C is convex. Then r,(x) is a continuous convex function
on C for every p € Q. This follows from (3), (1) and the fact that r,,,(x)
are convex functions on C for all « € 4.

5. Suppose that C is convex. Then, for each p € O, the asymptotic
center of {W,:a € A} in C with respect to p is a closed convex subset of C.
This follows from (4).

6. If C is weakly compact convex, then for each p € Q, the asymptotic
center of {W,:a € A} in C with respect to p is nonempty. This follows
from (4), the equality {x € C:r,(x)=r }=Nne1 {x € C:r,(x)=r,+1/n}
and that closed convex subsets of weakly compact sets are weakly compact.

It is easy to see that the notion of asymptotic normal structure defined
in this paper is an extension of that defined earlier by the author in [7].

A topological semigroup is a set S together with an associative binary
operation and a Hausdorff topology such that, for each a € S, the two
mappings from S into S defined by s—as and s—sa for all s€ S, are
continuous. S is said to be left (right) reversible if any two (and hence any
finite number) nonempty closed right (left) ideals of S have nonempty
intersection (cf. [3, p. 34]). An action of a topological semigroup S on a
topological space X is a mapping y from S X X into X denoted by u(s, x)=
s(x) such that (sys,)(x)=s,(s5(x)) for all s,,s, €S, x € X. The action
is separately continuous if ¢ is continuous in each of the variables when
the other is held fixed. If X is a subset of E, then an action of S on X is
nonexpansive if, for each seS, the mappings from X into X de-
fined by x—s(x) for all x € X is nonexpansive with respect to Q, that is,
pls(x)—s(y)=p(x—y) forallpe Q and x, y € X.

3. Characterizations of normal structure. Throughout this and the
next section, the notions of normal structure, complete normal structure,
asymptotic normal structure and nonexpansive mappings are always
taken with respect to Q.

The following two lemmas are straightforward generalizations of the
corresponding versions in Banach space; proofs are omitted (see [2] for
Lemma 1 and [7] for Lemma 2).

LEMMA 1. A convex subset of E has normal structure if and only if it
does not contain a bounded sequence {x,},~, such that, for some p € Q with
0,({x.))>0,

d (X4, Co(xy, ", x,)) = 8,({x,}) asn— oo,

where for ASE, d (x, A)=inf{p(x—y):y € A4}.
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LEMMA 2. A convex subset of E has normal structure if and only if it
does not contain a bounded sequence {x,},, such that, for some p € Q with
6,({x,})>0 and some real number c¢>0,

p(xn - xm) § ¢ and p(xn+1 - jn) ;. ¢ — l/n2
for alln=1, m=1.

In what follows, we shall use r, ,(x), r,(x) and r, as defined in the
previous section without referring to the original net {W,:« € 4} and set
W if no ambiguity can arise. The proof of the following theorem is analog-
ous to that of Proposition 1 in [7]; we offer a sketch of it since this theorem
is the central part of this paper.

THEOREM 1. A convex subset C of E has normal structure if and only if
it has asymptotic normal structure.

Proor. The sufficiency part follows from the definition of asymptotic
normal structure by taking W,= W for each a € 4.

For the necessity part, suppose that C does not have asymptotic
normal structure; let W be a bounded convex subset of C, {W,:a € A}
a decreasing net of nonempty subsets of W and p a seminorm in Q with
0,(W)>0, such that r (x)=r, for every x € W. By basic property (2)
following the definition of asymptotic normal structure, we have r,>0.
Let x, be an arbitrary element of W. Since r (x,)=r,, there exists an
a € 4 and an x, € W, such that p(x;—x,)=r,—1. By moving x, towards
x, along the line segment joining x, and x, if necessary, we may assume
that p(x,—x;)=r,. Suppose that x,, x,, * -+, x,, have been chosen such
that x, e W, p(x;—x,)=r,, i=1,-++,n, j=1,---,n,and p(x,—%,_,)=
r,—1/(n—1)% We proceed to choose x,,, as follows: Since 4 is a directed
set and r,(x;)=r,, r, (%,)=r, for every i=1, -+, n, wecan find an « € 4
such that r,, (x,)Sr,+1/n*(n+1), i=1,---,n, and r, (X,)=r,+
1/n*(n+1). Choose z,€ W, such that r, (X,)—p(zo—X,)=1/n*(n+1).
Let z,, - - -, z,, be defined recursively by the formulae

zi=tixi+(l—ti)zi_1’ i=l,°-~,n’
where
p(x; —z;y) — 1

p(x; — z;1)

ti=max( ”,0) foreachi=1,"--,n.

We then define x, ., =z,. An argument similar to that used in the proof of
Proposition 1 in [7] shows that p(x, ;—x;)=r, for all i=1,---,n,
X,41 € W and that p(x,.,—X,)=r,—1/n% By induction, a sequence
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{*,}n=11s constructed in W such that the condition in Lemma 2 is satisfied
with c=r,>0. This implies that C does not have normal structure and the
proof is complete.

COROLLARY 1. A weakly compact convex subset C of E has normal
structure if and only if it has complete normal structure.

Proor. The sufficiency part follows from the definition of complete
normal structure by taking W,= W for each « € 4. Suppose that W< Cisa
closed convex set which contains more than one point and {W,:a € A} isa
decreasing net of subsets of W such that for some p € Q with 6,(W)>0,
ry(Wy, W)=r, (W, W) for every « € A and cl(U {€,(W,, W):a € A}) is
equal to W (weak compactness of W guarantees that |J {€,(W,, W): a4}
is nonempty, see [1]). Then clearly r,(x)=r, (W, W) for every xe€
U {€,(W,, W):a € A} so that, by continuity, r,(x)=r, (W, W) for every
x € W. This, together with Theorem 1, proves the corollary.

4. Asymptotic centers and nonexpansive mappings. Suppose X is a
topological space and S is a left reversible topological semigroup acting on
X such that the mapping (s, x)—s(x) is separately continuous. Then §
becomes a directed set if we define a=b if and only if aS< cl(bS) (see [6]).
Moreover, if for a fixed element u € X, we define W =cl(sS(u)) for all
s €S, then the family {W :s € S} is a decreasing net of subsets of X
(see [6]). We have the following

THEOREM 2. Let X be a nonempty, weakly compact convex subset of E.
Let S be a left reversible topological semigroup of nonexpansive, separately
continuous, actions on X. Let p € Q. Then the asymptotic center A of the
net {W:s € S} in X with respect to p is a nonempty, closed convex subset of
X and is mapped into itself by each element of S. If, moreover, X has normal
structure and 6,(X)>0, then A is a proper subset of X.

Proor. By Theorem 1 and materials in §2, we have only to prove that
A is mapped into itself by each element of S. Let x€ 4 and s€ S. Let
>0 be arbitrary. Since x € A4, there exists ¢ € S such that tSu)< W, =
B,[x, r,+¢]. Since s is nonexpansive, we have stS(u)< B, [s(x), r,+¢€] so
that W,,= B, [s(x), r,+¢]. It follows that s(x) € 4 and the proof is com-
plete. O

The following theorem is a consequence of Theorem 2 and is also a
consequence of Corollary 1 in this paper, together with Theorem 1 in [6].

THEOREM 3. Let K be a nonempty, weakly compact convex subset of E
and assume that K has normal structure. Let S be a left reversible topological
semigroup of nonexpansive, separately continuous actions on K. Then K
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contains a common fixed point for S, i.e. there exists x € K such that
s(x)=x for every s € S.

Proor. Using Zorn’s lemma, we obtain a subset X of K which is
minimal with respect to being nonempty, closed, convex and mapped
into itself by each element of S. Theorem 2 implies that X is a singleton
and hence contains a common fixed point of S. O

Let {x,:« € A} be a bounded net in E and C a nonempty subset of E.
For each « € A, define W,={x;:$=a, f € A}. The asymptotic center of
{W,:a € A} in C with respect to a p € Q will be called, simply, the asymp-
totic center of {x,:a« € A} in C with respect to p.

THEOREM 4. Let X be a nonempty, weakly compact subset of E and
let & be a family of nonexpansive self-maps of X such that every finite
subfamily of & has a common fixed point in X. Let A be the set of all
finite subsets of % , ordered by inclusion. Let p € Q. Then we have:

(a) For each o € A, define x, to be a common fixed point of «. Then the
asymptotic center A of the net {x,:o. € A} in X with respect to p is a nonempty
closed convex subset of X which is mapped into itself by every member of
F. If, moreover, X has normal structure and 6,(X)>O0, then A is a proper
subset of X.

(b) For each o € A, define W, to be the set of common fixed points of
. Then the asymptotic center A of the net {W,:a € A} in X with respect to
p is a nonempty closed convex subset of X which is mapped into itself by
every member of . If, moreover, X has normal structure and 6,(X)>0,
then A is a proper subset of X.

ProoF. (a) Let x€ A4 and fe %. Let ¢£>0 be an arbitrary positive
number. There exists « € A such that p(x;—x)=<r,+¢ for all § with f=a.
If we let y={f}Ua, then for all #=v, we have

p(f(xp) = f(x)) = p(xg — f(x)) S p(xg —x) =1, + &

It follows that f(x) € A. The rest of (a) follows from Theorem 1 and
materials in §2.

The proof of part (b) is parallel to that of part (a) and is omitted.

Theorem 2 (and hence Theorem 1) in [7] follows from the above
theorem by using a standard argument of Zorn’s lemma (see the proof
of Theorem 3 in this paper).

I thank Professor Hilton V. Machado for calling my attention to
Theorem 4(a).
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