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SYZYGIES IN   ly*z]

D.   G.   MEAD  AND  M.   E.   NEWTON1

Abstract. For every [yvz] we obtain an infinite sequence of

syzygies as well as the coefficients of some of the terms in the

derivatives of these syzygies.

In the investigation [2] of the ideals ly2z] and ly3z], it was necessary

to use the syzygiespyxzA+yzxA —yzAx=0 and

PLvjVi - O + L)y\zx - yyxz2]A + (2pyxzx + yz2)yAx - y2zxA2 = 0.

In this paper we generalize these results, obtaining an infinite family of

syzygies in lyvz], and develop some of the properties of their coefficients.

Notation. Let A=yvz and, as is customary, use subscripts to represent

differentiation of y, z, and A. The following special notation for multi-

nomial coefficients will be useful. Let

M(m, a, k) = m!/(l!)°»(2!)a2 • ■ • (m!)0"*/c!.

We also let

Y(a) = y*# • • • j£.

For a function F(a0, ax, a2, • • •) we say the sum 2 T(a0, ax, • • •) is (m, a) if

the summation is over all sequences of nonnegative integers (a0, ax, a2, • • •)

satisfying 2i=o a¿=m. If F is a function F(k, a0, ax, • • •) we say the sum

2 F(k, a0, ax, • • •) is (m, a, k) if the summation is over all nonnegative

integers k and sequences of nonnegative integers (a0, ax, • • •) satisfying

fc+2 ¡a¿=m.
Since z=A/yv, it is easy to see that zm=P(y, A)¡yp+m where P(y, A)

is a polynomial in the yf and A¡. In fact we have

(1) y»+mzm = 2 c(a0, ■■■,am, k)Y(a)Ak

where

c(a0, ■■■,am,k) = (-l)m-"o( P+m-a0-l ^^ ^ fc)
\p — 1, ax, • • •, aj
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and the sum is (m, a) and (m, a, k). Using

(2) yv+m+1zm+x = yPx(y, A) - (p + m)yxP(y, A),

one can construct a proof of (1) by induction on m. The relation (1) is

true for m=0 and, assuming (1) true for m, we separate Px(y, A) in (2)

into three types of terms: (i) a0(yx¡y)Y(a)Ak, (ii) 2i=x ai(yi+xlyi)Y(a)Ak,

and (iii) Y(a)Ak+x. We collect all terms from the right side of (2) which

involve j6" • • • yl?Al where 2 b¡=m+l and /+ 2 ib~m+1, and factoring

out (-ir+1-H3>-iTC6?0M(m+1'e'/), we find the following coeffi-
cients for the respective types of terms :

(j) -(b0bx)H(p+m-b0)(m+l)],

(ii) (m+1)-1 2¿=i (.+ l)6i+1=(m+l-61-/)/(m+l),

(iii) /(m+1)-1,

and for the last term in (2),  [-(/»+m)(-l)¿»1O-r-m-¿»0)~1(m + l)-1].

Since the sum of these coefficients is unity, this completes the proof of

(1).

The general syzygy theorem.    For every m>0,

2 (-ir-<W P + rn-a0-l \(m _ ^ ^ k)Y(a)ZmAk
** \p - 1, ax, ■ ■ ■ ,aj

+ 2 ("-OW P + T ~ a° ~ l W(m, a, k)Y(a)zm_xAk = 0,
\p — 1, ax, ■ ■ ■ ,aj

where the first sum is (m—l, a, k), the second is (m, a, k), and both sums

are (m, a).

Proof.    Expanding Am=(ypz)m we find

(3)     ymzm_xAm = ym+vzm_xzm + 2 ymzm^ d(c0, ■ ■ ■ , cm, j)Y(c)Z¡

where the sum is (p, c) and (m, c,j), withy'<m, and, by Leibniz' rule,

d=(c0.c1v-,cm)M(m, c,j). Using the identity (1) on /+"'"1zm_1, we see the

first term on the right side of (3) equals the negative of the first sum in

the statement of the theorem. The identity (1) can also be applied to

every term of the summation in (3) since

P - c0 = 2 ci = 2 ici = m ~ J<
i=i

or m + c0^.p+j. By (1),

f+% = 2 ("lW P V ~b°~[ W b, k)Y(b)Ak,
"~ \p — 1, bit - • •, bj

the sum being (j, b) and (J, b, k), and therefore the summation in (3)
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can be rewritten

22(-1)3'"&°(        P        )M(m,c,j)
\c0, • ■ *, cml

x / P +j - b0 - 1  \Ma bt k)Y{a)Zm_iAk
\p - 1, bx, • ■ ■, bj

= 2i-iy-»»(       P       )(p +/' - b° - ]  )M(m, a, k)Yia)zm_xAk,
\c0, ■ ■ ■, cj \p - l,bx,- ■ ■ ,bj

where we have let b0=a0+p+j—m — c0, and for />0, bi=ai — ci, and

the latter sum is (m, a), im, a, k), (/», c), and (m, c,j) with/<m. Hence

the monomial ymzm_xAm minus the summation in (3) can be rewritten

ymzm-XAm+Z e(a0, ■ ■ • ,am, k)M(m, a, k)Y(a)zm_xAk where the sum is

(m, a) and (m, a, k), with k<m, and

='V(_])™+=o-ao-»-1_^_( m + c0-a0 \

m + c0 — a0\c0,---,cm,ax — cx,---,am — cj

the sum being (p, c) with 2 icf>0 (i.e., c„<p).

The proof of the theorem will be complete once we show that

e(a0,---,am,k) = (-lT-do(P + ™-a°-1).
\p - 1, ax, • • • ,am/

Note that the coefficient of x" in (l+x)-lm-a^(l+x)ai ■ ■ • (l+xf* is

2 (-<-\+- -')(:;)(:;) ••C;) = o,
where the sum is (p, c). This implies that

y (-iy°(m - flo + Co - l\/flA . . . iam\

c„<p \ Co l\cxI \cj

= (-IY+1 m ~ a°(m - ao + P- l\

v    \       v - l       /'

Multiplying both sides by (-i)m~v~a'>~1(pl(m-a0))(a^~a,lj, we obtain the

desired result.

Derivatives of syzygies. The investigation of the ideals lyzz] and

ly3z] requires knowledge of the syzygies and of the coefficients of some

terms in the derivatives of the syzygies. In the following theorem we

obtain some of the coefficients in the derivatives of the new syzygies

just derived, and this generalizes some of the results in [2].
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Theorem 2.    The coefficient of y™zsAt in the Tth derivative of the

mth syzygy is

T\(t — pr — s)     -r-r ,
———     1 I (î - /"• - 0.
(r!)"*(s - m + 1)! t! U

M'Aère T=mr+s+t—2m+l.

The proof of the theorem will be given following two preliminary

lemmas.

Lemma 1.

y (-ir-J P + m-a0-l \{m _ h fl> k)
\p - 1, alt ••• ,aj

(r\)mt\

= tl(t-pr- i),
(r!)a°((r - l)!)ai • • • ((r - m)!)0»(f - /c)!      7=o

H>/*ere r/*e ram is (m, a) and im—I, a, k).

Proof.    The sum on the left is (m—1)! times

y(_ir^Jp + m-a0-l\i   m-a0   WrY*... / rWrV

\     m — a0 / \a,, • ■ ■ , am) \1/ \m/   \fc/'

the sum being (m, a) and (m— 1, a, k) and we will show this sum equals

\m—lj'

Note that

(1 + xy* = (1 + «)-* = 2 (-1)'(P + ¡ " ^ii'

where u=il+x)r— 1. For each term of degree m—A:—1 in x from «! =

((l+x)r-l) • • • ((l+x)r-l) and for i=l, 2, • • • , let a¿ be the number

of factors u from which a term of degree i in x was chosen. It is clear that

2 ia—m—k—l and that the coefficient of xm~k~x in ul is

^ \a1,---,flm/\l/ W   '

the sum being over a¿ satisfying '2,iai=m—k—l and 2i=i aj=/. Therefore

the coefficient of x™-1 in (1 +x)i_1"' is

V(_ir-JP + "--«o-lU   »-«,   \M- .   /rWA
\        m — a„        / xa!, • ■ • , am/\1/ \m/   Vfc/

and we are done.
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Lemma 2.

2(-l)m'4P + m - a°~ l)M(m,a,k)
\p - 1, ax, ■ ■ ■ , aj

(r])mt\ ?¡4,
U(t-pr- i),

(rlfXir _ i)»)«,.. .((r _ „,).)-(, _ fe)!      M

where the sum is im, a) and (m, a, k).

The proof is essentially the same as the one just given and involves

examining the coefficient of x"1 in (l+x)'-*"'.

Proof of the theorem. Differentiating the mth syzygy T times,

we find the coefficient of y™zBAt is

y (-Vr^-4 P + m-a0-l \M(m _ ^ ^ k)
\p - l,ax, • • ■ ,aj

T!

(r\fo((r - ly.fx ---((r - m)!)a-"(s - m)! (r - fe>!

+ y (-1)*-^/ P+m-a0-l \M(m^ fl> k)

\p - 1, Oj, •• ■ ,aj

T!
X

(/-!)ao((r - l)!)"i • • • ((r - m)!)^ - m + 1)! (i - fc)!

where both sums are (m, a), the first sum is also (m—1, a, k) and the

second is (m, a, k). These are

-T!/((r!)m(s - m)!r!)   and    T!/((r!)m(5 - m + 1)! f!)

times the respective expressions in Lemmas 1 and 2, and the result of

Theorem 2 follows from those of the two lemmas.
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