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SYZYGIES IN [yz]

D. G. MEAD AND M. E. NEWTON'

ABsTRACT. For every [y”z] we obtain an infinite sequence of
syzygies as well as the coefficients of some of the terms in the
derivatives of these syzygies.

In the investigation [2] of the ideals [y?z] and [y®z], it was necessary
to use the syzygies py,z4+yz,A—yzA,=0 and

plyyezi — (p + Dyizy — yyizlA + 2pyizy + yzo)yA, — y*z,4, = 0.

In this paper we generalize these results, obtaining an infinite family of
syzygies in [y?z], and develop some of the properties of their coefficients.

Notation. Let A=y?z and, as is customary, use subscripts to represent
differentiation of y, z, and 4. The following special notation for multi-
nomial coefficients will be useful. Let

M(m, a, k) = m![(1)2N)% - - - (m!)* k).
We also let
Y(a) = y™y -+ yor.

For a function F(ay, a,, a,, - - *) we say the sum >, F(ay, a;, * - *) is (m, a) if
the summation is over all sequences of nonnegative integers (ay, a, a,, * * *)
satisfying >,_o a;=m. If F is a function F(k, a,, a,, - - ) we say the sum
2 F(k, ay, ay, - - ) is (m, a, k) if the summation is over all nonnegative
integers k and sequences of nonnegative integers (a,, a;, * * *) satisfying
k+> ia;=m.

Since z=A[y", it is easy to see that z,=P(y, A)[y**™ where P(y, A)
is a polynomial in the y; and A4;. In fact we have

(1) Y2 = D gy, Ay )Y ()4
where

c(ag, ", a, k)= (—1)”‘_"0( pt+m—a—1 )M(m, a, k)
p_lyala".aam
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and the sum is (m, @) and (m, a, k). Using
@ yrimHiz, o = yPi(y, 4) — (p + myP(y, A),

one can construct a proof of (1) by induction on m. The relation (1) is
true for m=0 and, assuming (1) true for m, we separate P;(y, 4) in (2)
into three types of terms: (i) ay(y1/y) Y(a)4y, (il) 2oy @;(yia[y)) Y(a)4;,
and (iii) Y(a)Ak+1. We collect all terms from the right side of (2) which
involve y% - - - yimA, where > b,=m+1and I+ 3 ib,=m+1, and factoring
out (—1)m™+i=vo(, 5% ""b“b YM(m+1,b,1), we find the following coeffi-
cients for the respective types of terms:

(D) —oby)/[(p+m—bg)(m+1)],

(i) (m+1)7" 2icy ((+ Dby =(m+1-b,—1)/(m+1),

(iii) I(m+1)7,
and for the last term in (2), [—(p+m)(—1)b(p+m—by)(m+1)71].
Since the sum of these coefficients is unity, this completes the proof of

.

THE GENERAL SYZYGY THEOREM. For every m>0,

S~y (P T U)atn — 1,0, 0¥ @)z,

P — 1’a19...’am
# S0 PEM %~ Dm0, Y@zt = 0,
p-= lsal,”'aam

where the first sum is (m—1, a, k), the second is (m, a, k), and both sums
are (m, a).

Proor. Expanding 4,,=(y?z),, we find
(3) ymzm—lAm = ym-H’zm-lzm + z ymzm—l d(co, T Cms j)Y(C)Zj

where the sum is (p, ¢) and (m, ¢, j), with j<m, and, by Leibniz’ rule,
d=(cg.c,0....c,)M(m, c, ). Using the identity (1) on y»+™~'z,_,, we see the
first term on the right side of (3) equals the negative of the first sum in
the statement of the theorem. The identity (1) can also be applied to
every term of the summation in (3) since

p—co=zc,.§2ic,~=m—j,
i=1
or m+c,=Z p+j. By (1),

Yz, =3 (= 1)f'°o(p” b VG, b kYO
- 4, Uy » Ym

the sum being (j, b) and (j, b, k), and therefore the summation in (3)
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can be rewritten

S P YMeme

0> s bm

x ( PE—b—1 )M(j, b, K)Y(a)zp 14y
p_lybl’.”’bm

=z(_1y—bo( 4 )( Ptj—b—1 )M(m, a, )Y (@21 Ap

Cos """ s Cm p_l’bl’...,bm

where we have let by=ay+p+j—m—c,, and for i>0, b,=a,—c;, and
the latter sum is (m, a), (m, a, k), (p, ¢), and (m, c, j) with j<m. Hence
the monomial y™z,, ;A4,, minus the summation in (3) can be rewritten
V"2 1A+ e(ag, 5 Ay, kK)M(m, a, k)Y(a)z,,_, A, where the sum is
(m, a) and (m, a, k), with k<m, and

e(aOa Ty ama k)

=2 (_])m+c°—a0—p—l#( m -+ ¢y — ay )
’
m-4Co—ay\Co," " 3Cpns @1 —C153° " * 3 Ay — Cpy

the sum being (p, ¢) with > ic;>0 (i.e., ¢,<p).
The proof of the theorem will be complete once we show that

e(ao,-..,am,k)=(_1)m—ao(P+m—ao_1).
P—l,al,"',am

Note that the coefficient of x” in (14x)~™%)(1+x)" - - - (14x)’» is

() ()

where the sum is (p, ¢). This implies that

Fr{ )
= (=1 u(m —a+p— 1)'

P p—1

Multiplying both sides by (—1)"-?=%=(p/(m—ag))(a,...3,), We obtain the
desired result.

Derivatives of syzygies. The investigation of the ideals [y?z] and
[y®z] requires knowledge of the syzygies and of the coefficients of some
terms in the derivatives of the syzygies. In the following theorem we
obtain some of the coefficients in the derivatives of the new syzygies
just derived, and this generalizes some of the results in [2].
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THEOREM 2. The coefficient of y;'z,A, in the Tth derivative of the
mth syzygy is

m—2

T!(t — pr — s) .
)™s — m + 1)! t!g(t pr =1,

where T=mr+s+t—2m+1.

The proof of the theorem will be given following two preliminary
lemmas.

LEMMA 1.

2(—1)m—ao( P+ m=—a— 1)M(m — 1,4,k

p— laal,”'sam
(ryme! pet

* (r)((r — DY - - ((r — m))(t — k)! = g (t—pr—1i,

where the sum is (m, a) and (m—1, a, k).

PrOOF. The sum on the left is (m—1)! times

X e A ) (R WA

the sum being (m, @) and (m—1, a, k) and we will show this sum equals

—Pr
m—1J-

Note that
4= +w =3 (P e
=0

where u=(1+x)"—1. For each term of degree m—k—1 in x from wul'=
((A4+xyr—=1)--- ((14+x)—1) and for i=1,2, -, let a; be the number
of factors u from which a term of degree i in x was chosen. It is clear that
> ia;=m—k—1 and that the coefficient of x™~*-1 in #! is

2 (o) O G

the sum being over q; satisfying > ia;=m—k—1and },_, a,=I. Therefore
the coefficient of x™ in (14x)""?" is

X (R (R R M

and we are done.
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LEMMA 2.

Z(—l)’”‘“o( ptm—a—1 )M(m, a, k)

p_l,al,.“aam
(rhm™! ml

XOW«’—DW““«r—mw%U—kﬂ=£}O_p”‘&

where the sum is (m, a) and (m, a, k).

The proof is essentially the same as the one just given and involves
examining the coefficient of x™ in (1+4x)""".

PrOOF OF THE THEOREM. Differentiating the mth syzygy T times,
we find the coefficient of y;'z,4, is

Z(—l)"““v‘l( ptm=—a—1 )M(m — 1,4,k

p___l,al’...,am
N T!
(r((r = DY - (0 = m)Yn(s — m)! (1 — k!
+ Z(—l)’"‘%( phm=do =1 )M(m, a, k)
p_l’als“"am
T!
X )
(D((r — DY - - (= m))n(s —m + DI (E— B!
where both sums are (m, a), the first sum is also (m—1, a, k) and the
second is (m, a, k). These are

=T!((Y™(s — m)!t!) and T!((F)"(s — m + D!t!)

times the respective expressions in Lemmas 1 and 2, and the result of
Theorem 2 follows from those of the two lemmas.
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