SOME PHENOMENA IN HOMOTOPICAL ALGEBRA

K. VARADARAJAN

ABSTRACT. In [6] D. G. Quillen developed homotopy theory in categories satisfying certain axioms. He showed that many results in classical homotopy theory (of topological spaces) go through in his axiomatic set-up. The duality observed by Eckmann-Hilton in classical homotopy theory is reflected in the axioms of a model category. In [7] we developed the theory of numerical invariants like the Lusternik-Schnirelmann category and cocategory etc. for such model categories and in [8] we dealt with applications of this theory to injective and projective homotopy theory of modules as developed by Hilton [2], [3, Chapter 13].

Contrary to the general expectations there are many aspects of classical homotopy theory which cannot be carried over to Quillen's axiomatic set-up. This paper deals with some of these phenomena.

Introduction. For any topological group G it is well known [1], [5], that there exists a principal fibre space $E_G
ightharpoonup^{p_G} B_G$ with group G and total space E_G contractible. This suggests the following question. Suppose M is a group object in a model category $\mathscr C$ in the sense of Quillen [6]. Does there exist a fibration $E
ightharpoonup^{p} B$ in $\mathscr C$ with the property that E is contractible (i.e. to say $\pi(RQ(E), RQ(E)) = 0$ following the notation of Quillen [6]) with fibre of p isomorphic to M? We will give examples to show that, in general, this is false. Also we will illustrate that, given a cogroup object H in a model category $\mathscr C$, there need not exist a cofibration $A
ightharpoonup^{q} E$ in $\mathscr C$ with E contractible and cofibre of E isomorphic to E.

Actually it will turn out that the two model categories $\mathscr C$ and $\mathscr F$ that we mention in this connection (§1) will have the following additional properties.

- (i) All the objects are simultaneously group objects and cogroup objects.
- (ii) For every object A both ΣA and ΩA are contractible.

It can easily be shown that in the category \mathcal{F} of topological spaces if G is a group object with ΣG contractible then G itself is contractible.

In §2 we characterise all CW-complexes X with the property that ΣX is contractible. They turn out to be "Moore CW-complexes" $M(\pi, 1)$

Received by the editors June 25, 1973.

AMS (MOS) subject classifications (1970). Primary 18G05, 55D30, 55D35, 55D40, 55D50.

Key words and phrases. Category, cocategory, p-homotopy, i-homotopy, Moore spaces.

[@] American Mathematical Society 1974

for groups π satisfying $H_1(\pi)=0=H_2(\pi)$. On the other hand, if X is a 0-connected CW-complex with ΩX contractible, then X itself is contractible.

- 1. The model categories \mathscr{C} and \mathscr{F} . Let \mathscr{C} denote the category of all modules over a Dedekind domain Λ . Defining cofibrations, weak equivalences and fibrations to be respectively monomorphisms, *i*-homotopy equivalences in the sense of Hilton [2] and maps satisfying the lifting property (L.P.) below, the author showed in [8] that \mathscr{C} is a model category satisfying the axioms M_0 to M_5 of Quillen [6].
- (L.P.) A map $p: E \rightarrow B$ in \mathscr{C} satisfies (L.P.) if given any $f: J \rightarrow B$ with J injective there exists a lift $g: J \rightarrow E$ of f (i.e. pg = f).

Let \mathcal{F} be the category of finitely generated modules over a Principal Ideal Domain (PID). Defining fibrations, weak equivalences and cofibrations to be respectively epimorphisms, p-homotopy equivalences in the sense of Hilton [2] and maps satisfying the extension property (E.P.) mentioned below it was shown in [8] that \mathcal{F} is a model category in the sense of Quillen.

(E.P.) A map $q: A \rightarrow E$ is said to have the (E.P.) if given any finitely generated free Λ -module F and any map $\alpha: A \rightarrow F$ there exists a map $\beta: E \rightarrow F$ satisfying $\beta q = \alpha$.

It is clear that for any M in \mathscr{C} (resp. \mathscr{F}) $M \times M \to^{\mu} M$, $M \to^{\sigma} M$ defined by $\mu(x, y) = x + y$, $\sigma(x) = -x$ make M into a group object in \mathscr{C} (resp. \mathscr{F}) with μ as the multiplication, σ as the inversion and $0: M \to M$ as the unit. Similarly, $M \to^{\nu} M \oplus M$ given by $\nu(x) = (x, x)$ makes M into a cogroup object in \mathscr{C} (resp. \mathscr{F}) with σ as the inversion and $M \to^{0} M$ as the co-unit. The following were proved in [8].

- (1) In \mathscr{C} as well as \mathscr{F} all the objects are fibrant and cofibrant.
- (2) An object M of \mathscr{C} (resp. \mathscr{F}) is contractible if and only if M is injective (respectively free).
 - (3) For any M in $\mathscr C$ as well as $\mathscr F$ both ΣM and ΩM are contractible.
 - (4) For M in \mathscr{C} or \mathscr{F}
 - (a) Ind Cat M=0=Cocat M if and only if M is contractible.
 - (b) Ind Cat $M = \infty = \text{Cocat } M$ whenever M is not contractible.

Proposition 1.1. Let $M \in \mathscr{C}$ (resp. \mathscr{F}).

- (i) If there exists a fibration $p: E \rightarrow^p B$ with E contractible and fibre of p isomorphic to M, then M itself is contractible.
- (ii) If there exists a cofibration $q: A \rightarrow E$ with E contractible and cofibre of q isomorphic to M, then M itself is contractible.

PROOF. If there exists a fibration $E \rightarrow {}^{p}B$ with E contractible and fibre of p isomorphic to M then, from the definition of Cocat M, we see

that Cocat $M \le 1$. Then 4(b) implies M is contractible. This proves (i). The proof of (ii) is exactly dual and hence omitted.

2. Contractibility of ΣX . We now consider the category \mathcal{F}_* of pointed topological spaces. Unless otherwise mentioned the homology groups we consider are the singular homology groups.

PROPOSITION 2.1. Let X be a topological space which is of the homotopy type of ΩY for some Y. Then ΣX is contractible if and only if X itself is contractible.

PROOF. When X is contractible clearly ΣX also is. Assume ΣX contractible. Let $f: X \rightarrow \Omega Y$ be a homotopy equivalence. Then

$$[X, X] \xrightarrow{f_{\bullet}} [X, \Omega Y] \simeq [\Sigma X, Y] = 0$$

since ΣX is contractible. Thus [X, X] = 0, and X is contractible.

COROLLARY 2.2. Let G be a topological group. Then ΣG is contractible if and only if G itself is.

PROOF. It is known that G is of the homotopy type of ΩB_G where B_G is a classifying space for G.

REMARK 2.3. When G is a group object in \mathcal{F}_* the above corollary asserts that ΣG is contractible if and only if G itself is. Consider the model categories $\mathscr C$ and $\mathscr F$ introduced in §1. All the objects in $\mathscr C$ (or $\mathscr F$) are group objects; for any object M both ΣM and ΩM are contractible. By taking the base ring Λ to be the ring Z of integers we see immediately that not all M in $\mathscr C$ (resp. $\mathscr F$) are contractible.

DEFINITION 2.4. Given any group π not necessarily abelian we call a space X a "Moore space" of type $(\pi, 1)$; if X is arcwise connected, $\pi_1(X) \simeq \pi$ and $H_j(X) = 0$ for $j \geq 2$.

This definition differs from the one given in [9] in only one respect. We allow π to be nonabelian. We denote a Moore space of type $(\pi, 1)$ by $M(\pi, 1)$. Let $H_i(\pi)$ denote the *i*th homology group of the group π with coefficients in Z (with trivial π -operators). The following is proved in [9].

PROPOSITION 2.5. A Moore space $M(\pi, 1)$ exists if and only if $H_2(\pi) = 0$.

The proof given in [9] is valid even if π is not abelian. When $H_2(\pi)=0$ the construction in [9] actually gives an $M(\pi, 1)$ CW-complex.

PROPOSITION 2.6. Let X be a CW-complex. Then ΣX is contractible if and only if X is an $M(\pi, 1)$ complex with $H_1(\pi) = 0 = H_2(\pi)$.

PROOF. Assume ΣX contractible. If α is the cardinality of the set of arc components of X then $H_1(\Sigma X)$ is free abelian of rank $\alpha-1$. Since

 $H_1(\Sigma X)=0$ we see that $\alpha=1$. Thus X is 0-connected. Let π denote $\pi_1(X)$. Then from $0=H_{j+1}(\Sigma X)\simeq H_j(X)$ for $j\geq 1$ we see that $H_1(X)\simeq \pi/[\pi,\pi]\simeq H_1(\pi)=0$ and $H_j(X)=0$ for $j\geq 2$. Hence, X is an $M(\pi,1)$ complex with $H_1(\pi)=0$. From Proposition 2.5 we get $H_2(\pi)=0$.

Conversely, assume X is an $M(\pi, 1)$ CW-complex with $H_1(\pi)=0$. ΣX is simply connected (Van Kampen theorem). From $H_{j+1}(\Sigma X)=H_j(X)$ for $j\geq 1$, $H_j(X)=0$ for $j\geq 2$ and $H_1(X)\simeq \pi/[\pi,\pi]\simeq H_1(\pi)=0$ we immediately see that $H_i(\Sigma X)=0$ for all $i\geq 1$. By J. H. C. Whitehead ΣX is contractible.

REMARK 2.7. Finitely presentable groups π satisfying $H_1(\pi) = 0 = H_2(\pi)$ are known to be *the groups* which occur as the fundamental groups of smooth homology *n*-spheres $(n \ge 5)$ [4]. There are many such nontrivial groups.

Thus there are noncontractible CW-complexes X with ΣX contractible.

3. Contractibility of ΩX .

LEMMA 3.1. Suppose X is of the homotopy type of a 0-connected CW-complex. Then ΩX is contractible if and only if X is.

This is an immediate consequence of the relation $\pi_i(\Omega X) \simeq \pi_{i+1}(X)$ for $i \geq 0$ and J. H. C. Whitehead's theorem.

Example 3.2. Let A_1 , A_2 , A_3 , A_4 be the subsets of the plane \mathbb{R}^2 given by

$$A_1 = \{(x, \sin x^{-1}) \mid 0 < x \le \frac{1}{2}\pi^{-1}\}, \qquad A_2 = \{(\frac{1}{2}\pi^{-1}, y) \mid -2 \le y \le 0\}, \\ A_3 = \{(x, -2) \mid 0 \le x \le \frac{1}{2}\pi^{-1}\}, \qquad A_4 = \{(0, y) \mid -2 \le y \le 1\}.$$

Let $X = A_1 \cup A_2 \cup A_3 \cup A_4$. Let $x_0 = (0, 1)$ be chosen as the base point in X. It is known that the space $\Omega(X, x_0)$ is contractible. However X is not contractible. In fact, the Čech homology $\check{H}_1(X) \simeq Z$; whereas the singular homology group $H_1(X) = 0$. Hence, X is not even of the homotopy type of a CW-complex.

REMARK 3.3. Suppose X is a 0-connected noncontractible space with $\Omega(X)$ contractible. From Lemma 3.1 we immediately get that such an X will not be of the homotopy type of a CW-complex.

REMARK 3.4. Let X be the space $A_1 \cup A_2 \cup A_3 \cup A_4$ given in Example 3.2. Using the fact that Čech cohomology theory satisfies the axioms of Eilenberg-Steenrod we get, in the usual way as a consequence of the exactness homotopy and excision axioms, $\check{H}^{i+1}(\Sigma X) \simeq \check{H}^i(X)$ for $i \ge 1$. In particular, $\check{H}^2(\Sigma X) \simeq \check{H}^1(X) \simeq Z$. Hence, ΣX is not contractible. The same argument (repeated) yields that none of the spaces $\Sigma^l X$ $(l \ge 1)$ is contractible.

It might be interesting to find an example of a topological space X such that both ΣX and ΩX are contractible but X itself is not.

REFERENCES

- 1. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255. MR 27 #5264.
- 2. P. J. Hilton, *Homotopy theory of modules and duality*, Internat. Sympos. on Algebraic Topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 273-281. MR 20 #4588.
- 3. ——, Homotopy theory and duality, Gordon and Breach, New York, 1965. MR 33 #6624.
- 4. M. A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72. MR 40 #6562.
- 5. J. W. Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272-284. MR 17, 994.
- 6. D. G. Quillen, *Homotopical algebra*, Lecture Notes in Math., no. 43, Springer-Verlag, Berlin and New York, 1967. MR 36 #6480.
- 7. K. Varadarajan, Numerical invariants in homotopical algebra, J. Pure Appl. Algebra (submitted).
- 8. —, Numerical invariants in homotopical algebra. II, Applications, J. Pure Appl. Algebra (submitted).
- 9. ——, Groups for which Moore spaces $M(\pi, 1)$ exist, Ann. of Math. (2) 84 (1966), pp. 368-371. MR 34 #2017.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, CALGARY, ALBERTA, CANADA