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SOME PHENOMENA IN HOMOTOPICAL ALGEBRA
K. VARADARAJAN

ABSTRACT. In [6] D. G. Quillen developed homotopy theory in
categories satisfying certain axioms. He showed that many results
in classical homotopy theory (of topological spaces) go through in
his axiomatic set-up. The duality observed by Eckmann-Hilton in
classical homotopy theory is reflected in the axioms of a model
category. In [7] we developed the theory of numerical invariants
like the Lusternik-Schnirelmann category and cocategory etc.
for such model categories and in [8] we dealt with applications of
this theory to injective and projective homotopy theory of modules
as developed by Hilton [2], [3, Chapter 13].

Contrary to the general expectations there are many aspects of
classical homotopy theory which cannot be carried over to Quillen’s
axiomatic set-up. This paper deals with some of these phenomena.

Introduction. For any topological group G it is well known [1], [5],
that there exists a principal fibre space E;—"B; with group G and
total space Ej; contractible. This suggests the following question. Suppose
M is a group object in a model category % in the sense of Quillen [6].
Does there exist a fibration E—~?B in € with the property that E is
contractible (i.e. to say w(RQ(E), RQ(E))=0 following the notation of
Quillen [6]) with fibre of p isomorphic to M ? We will give examples to show
that, in general, this is false. Also we will illustrate that, given a cogroup
object H in a model category €, there need not exist a cofibration A—9E
in € with E contractible and cofibre of g isomorphic to H.

Actually it will turn out that the two model categories ¥ and & that
we mention in this connection (§1) will have the following additional
properties.

(i) Allthe objects are simultaneously group objects and cogroup objects.

(ii) For every object 4 both £4 and QA are contractible.

It can easily be shown that in the category 7 of topological spaces if G
is a group object with ZG contractible then G itself is contractible.

In §2 we characterise all CW-complexes X with the property that X
is contractible. They turn out to be “Moore CW-complexes” M(, 1)
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for groups = satisfying Hy(m)=0=H,(w). On the other hand, if X is a
0-connected CW-complex with QX contractible, then X itself is contract-
ible.

1. The model categories ¥ and . Let % denote the category of all
modules over a Dedekind domain A. Defining cofibrations, weak equiva-
lences and fibrations to be respectively monomorphisms, i-homotopy
equivalences in the sense of Hilton [2] and maps satisfying the lifting
property (L.P.) below, the author showed in [8] that ¥ is a model category
satisfying the axioms M, to My of Quillen [6].

(L.P.) A map p: E—B in ¥ satisfies (L.P.) if given any f:J—B with J
injective there exists a lift g:J—E of f (i.e. pg=f).

Let & be the category of finitely generated modules over a Principal
Ideal Domain (PID). Defining fibrations, weak equivalences and co-
fibrations to be respectively epimorphisms, p-homotopy equivalences in
the sense of Hilton [2] and maps satisfying the extension property (E.P.)
mentioned below it was shown in [8] that & is a model category in the
sense of Quillen.

(E.P.) A map q:A—E is said to have the (E.P.) if given any finitely
generated free A-module Fand any map «: A—F there exists a map g: E—~F
satisfying fg=o. ’

It is clear that for any M in € (resp. &) MXM—->'M, MM
defined by u(x, y)=x+y, o(x)=—x make M into a group object in ¥
(resp. &) with u as the multiplication, ¢ as the inversion and 0: M—M
as the unit. Similarly, M—~"M®M given by »(x)=(x, x) makes M into
a cogroup object in € (resp. F) with ¢ as the inversion and M—°M
as the co-unit. The following were proved in [8].

(1) In % as well as & all the objects are fibrant and cofibrant.

(2) An object M of € (resp. #) is contractible if and only if M is
injective (respectively free).

(3) For any M in % as well as & both XM and QM are contractible.

(4) For M in € or #

(a) Ind Cat M=0=Cocat M if and only if M is contractible.
(b) Ind Cat M= oco=Cocat M whenever M is not contractible.

PROPOSITION 1.1. Let M € € (resp. F).

(i) If there exists a fibration p: E—"B with E contractible and fibre of p
isomorphic to M, then M itself is contractible.

(il) If there exists a cofibration q: A—E with E contractible and cofibre
of q isomorphic to M, then M itself is contractible.

Proor. If there exists a fibration E—?B with E contractible and
fibre of p isomorphic to M then, from the definition of Cocat M, we see
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that Cocat M<1. Then 4(b) implies M is contractible. This proves (i).
The proof of (ii) is exactly dual and hence omitted.

2. Contractibility of X. We now consider the category J, of
pointed topological spaces. Unless otherwise mentioned the homology
groups we consider are the singular homology groups.

PROPOSITION 2.1.  Let X be a topological space which is of the homotopy
type of QY for some Y. Then XX is contractible if and only if X itself is
contractible.

Proor. When X is contractible clearly X also is. Assume XX con-
tractible. Let f: X—QY be a homotopy equivalence. Then

[X, X] 2> [X, QY] = [EX, ¥] = 0

since XX is contractible. Thus [X, X]=0, and X is contractible.

COROLLARY 2.2. Let G be a topological group. Then ZG is contractible
if and only if G itself is.

Proor. It is known that G is of the homotopy type of QB where B
is a classifying space for G.

REMARK 2.3. When G is a group object in J, the above corollary
asserts that XG is contractible if and only if G itself is. Consider the model
categories € and & introduced in §1. All the objects in € (or F) are
group objects; for any object M both ZM and QM are contractible. By
taking the base ring A to be the ring Z of integers we see immediately that
not all M in € (resp. &) are contractible.

DEFINITION 2.4. Given any group = not necessarily abelian we call a
space X a “Moore space” of type (m, 1); if X is arcwise connected,
m (X)=~7 and H;(X)=0 for j=2.

This definition differs from the one given in [9] in only one respect.
We allow 7 to be nonabelian. We denote a Moore space of type («, 1)
by M(m, 1). Let H;() denote the ith homology group of the group = with
coefficients in Z (with trivial m-operators). The following is proved in [9].

PROPOSITION 2.5. A Moore space M(w, 1) exists if and only if Hy(m)=0.

The proof given in [9] is valid even if = is not abelian. When H,(7)=0
the construction in [9] actually gives an M (7, 1) CW-complex.

PROPOSITION 2.6. Let X be a CW-complex. Then XX is contractible if
and only if X is an M(w, 1) complex with H,(7)=0=H,(m).

PrOOF. Assume XX contractible. If « is the cardinality of the set of
arc components of X then H,(X£X) is free abelian of rank a—1. Since
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H,(Z2X)=0 we see that «a=1. Thus X is 0-connected. Let 7 denote 7, (X).
Then from 0=H,,(EX)~H;(X) for j=1 we see that H,(X)~n/[m, 7]~
H,(7)=0 and H;(X)=0 for j=2. Hence, X is an M(m, 1) complex with
H,(m)=0. From Proposition 2.5 we get H,(m)=0.

Conversely, assume X is an M(w, 1) CW-complex with H,(m)=0.
2X is simply connected (Van Kampen theorem). From H;,,(XX)=H;(X)
for j=1, H;(X)=0 for j=2 and H,(X)=w/[m, m]~H,(7)=0 we immedi-
ately see that H,(ZX)=0 for all i=1. By J. H. C. Whitehead XX is con-
tractible.

REMARK 2.7. Finitely presentable groups  satisfying H,(m) =0=H,(7)
are known to be the groups which occur as the fundamental groups of
smooth homology n-spheres (n=5) [4]. There are many such nontrivial
groups.

Thus there are noncontractible CW-complexes X with XX contractible.

3. Contractibility of QX.

LemMa 3.1.  Suppose X is of the homotopy type of a 0-connected CW-
complex. Then QX is contractible if and only if X is.

This is an immediate consequence of the relation 7, (QX)~m,,,(X) for
i=0 and J. H. C. Whitehead’s theorem.
EXAMPLE 3.2. Let A,, A,, A3, A, be the subsets of the plane R? given by

Ay ={(x,sinx) [0 <x =Y,  A={lry)|-2=5y=0}
As={(x,=2)[0 S x = =71}, A={0,p]-2=y=1.

Let X=A4,UA,UA;UA,. Let x,=(0, 1) be chosen as the base point in X.
It is known that the space (X, x,) is contractible. However X is not
contractible. In fact, the Cech homology H,(X)=~Z; whereas the singular
homology group H,(X)=0. Hence, X is not even of the homotopy type
of a CW-complex.

REMARK 3.3. Suppose X is a O-connected noncontractible space with
Q(X) contractible. From Lemma 3.1 we immediately get that such an X
will not be of the homotopy type of a CW-complex.

REMARK 3.4. Let X be the space 4,4, UA;UA, given in Example
3.2. Using the fact that Cech cohomology theory satisfies the axioms of
Eilenberg-Steenrod we get, in the usual way as a consequence of the
exactness homotopy and excision axioms, Hi*1(ZX)~H!(X)fori=1. In
particular, H%(£X)~ H'(X)~Z. Hence, £X is not contractible. The same
argument (repeated) yields that none of the spaces XX (/I=1) is
contractible.

It might be interesting to find an example of a topological space X such
that both £X and QX are contractible but X itself is not.
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