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INVARIANT  SUBSPACES  FOR  PRODUCTS
OF  HERMITIAN  OPERATORS

HEYDAR RADJAVI and peter rosenthal

Abstract. It is shown that a nonscalar operator which is the

product of a Hermitian operator and a positive operator has a

nontrivial hyperinvariant subspace; this is a slight generalization

of a result of Suzuki's.

Suzuki [3] has shown that an operator T which is the product of two

positive operators has a nontrivial hyperinvariant subspace; (i.e., a

closed linear manifold, different from {0} and the entire space, which is

left invariant by every operator which commutes with T). We present

a simple proof of a slight generalization of Suzuki's result.

Theorem. If T is the product of a positive operator and a Hermitian

operator, (and T is not a multiple of the identity), then T has a nontrivial

hyperinvariant subspace.

Proof. Assume that T=RK where R is positive and K is Hermitian;

(if the product occurs in the other order simply apply the following to T*).

If R or K has a nontrivial nullspace then so does T or 7"*, and the null-

space of an operator is hyperinvariant. Assume that R and AT are injective;

they then also have dense ranges since they are Hermitian. Now R has a

unique positive square root R1'2. It is trivial to verify the fact that

TRm = Rii2tRmKRu^

and
(Rl/2K)T = (R1/2KR1/2)(R1/2K).

Since Rl/2K and R1'2 are injective and have dense ranges, the operator T

is quasi-similar to the Hermitian operator Ri/2KR1/2 and has a nontrivial

hyperinvariant subspace by the well-known result of Sz. Nagy-Foias

(cf. [2], [1, p. 103]).
It appears to be much more difficult to prove that the product of two

Hermitian operators has an invariant subspace; if the above were extended
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to the product of a positive operator and a unitary operator then, by the

polar decomposition, the invariant subspace problem would be solved.
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