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ON THE  LOCATION  OF THE  SINGULARITIES  OF

THE  FUNCTION  GENERATED  BY  THE BERGMAN
OPERATOR  OF  THE  SECOND  KIND

PAUL  ROSENTHAL

Abstract. Let g(x,y)=P%(f) be Bergman's operator of the

second kind,/(i/) analytic at q=0. The purpose of this paper is to

generalize a previous result of the author on the location of the

singularities oîg(x, y) when/(g) had only a simple pole./(g) now is

assumed to be a rational function whose poles are distributed along

the arc of a circle. An order relation is also obtained for g(x,y)

for certain fixed x and y sufficiently large and positive.

In Cartesian coordinates the differential equation (see below) becomes

y)xx-\-fyy—(lßx)tpx=0, abbreviated GASPT; see reference [10]. An

integral operator approach to this equation, and an investigation of

its singularities was pioneered by Gilbert [11], [12]. It should be noted,

however, that the operator used by Gilbert and that used by the author

are not the same. Consequently, the results of this paper are for a dif-

ferent class of solutions than investigated by Gilbert.

P2(f) maps functions f(q) analytic at ¿7=0 into solutions of the partial

differential equation (a case arising in fluid flow analysis) gZ2.+

NHz+z*)l2)igz+gz.)=0,  z=x + iy,  z*=x-iy,

Nix) = (1 + bx(-x)2'3 + •••)/- 12x

is analytic for — co<x<0. As in [9], we assume N(x)=l¡— 12x

(Tricomi case) and z*=x — iy = z (conjugate of z). With these

assumptions,

(1)

gix, y) - J£(u)/(qXl - fT1/a dt,       u = t2z\2x,    q = iz(l - Is),

£(U) = U-1/6F (±,-2,V)    or    »->«f(5- A ,\ A,
\6   3   3   u) \6   3   3   u)
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F is the hypergeometric function (we only treat the first case for F(w)

since the second case parallels the first case [9]), c (the path of integration)

is the semicircle t=eia, OSaSn, all integrals are in the improper (com-

plex) Riemann sense, W={(x,y)\31/2\x\<y, xS0,y>0}, our basic

domain [2, p. 107].

Theorem 1.    Let foq) be the rational function

(amqm + ■■■ + a0)l(bpqv + ■■■ + b0),        p>m

(when p=l, foq) reduces to the case treated in [9]) whose poles q = A, satisfy

the conditions Xj-\-iy¡=Aj e W, \AA=M, ^Xj-^maxlx,-!, |xj|>0, ISjSn.

Let R={(x,y)\(x,y)e W, min f|x3|^|x|<M, 0<y<min2yi, ISjSn},

S={(x,y)\(x,y)eW,mini\Xj\>x>0,lSjSn}, D=(RvS)cW. Then,

(I) for all (x,y) e D, g(x,y) is analytic, and (2) (2x¡, 2y¡), (fx,, 2yA are

singular points of gix, y) defined by (1).

Theorem 2. Let Q be compact, nonempty, and c5'1 = {x|0<[x|<

minflXjl, x negative, ISjSn}. Let hiy)=gix,y), x e Q, (x,y)eW.

Then h(y)=o(l) ismall o of 1) as y—>oo uniformly in x e Q.

Proof of Theorem 1. (Some of our methods of proof are based on

those in [9].) We write

f(q) = ZfM),      ÍÁ9) = 2 «»M.       8¿9) = h*(a - Ai)~"
3=1 k=l

(the partial fraction expansion of foq)), and s is the order of the pole

at q=Aj. Consider the general term gkiq). Using the series definition for F,

expanding gkiq) in a Taylor series about q=0, and then using the formula

[1, p. 33]

r(// + -2)
f-i/3    _  , „+i/e        dt        = _   W3    m    r      3}

J°      K (1 - t2)1'2        K '   \V Yin + I) ' '

r is the Gamma function, we obtain from (1)

i       ^      /     2x    \1/6

(2) ^x + *y'

(/!>.,)=îA^j){ù)+fre.»=!«.(-í)(t)")'
where

/ 1\
IV+/C_2/     /( t    1      „\^ Y '  "      2/    /l 1   1    x\
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F(a, b, c; w)

(3)

+

Bk are constants, /»^0 (when s=l, we obtain the case treated in [9]),

a2(p,s,xjA}) is analytic in x (x extended to complex values) for |x|<

\AA, p^l, and is uniformly bounded for all \x¡Aj\Sl—d and for all

p~=l, l>c/>0, and arbitrarily small. All limit operations used to derive

(2) are permissible providing \z\S\A¡\ —d, \x\S2~1\Aj\—d, l—d'Z.

2|x|/|z|, d>0 and sufficiently small.

Using next the formula [7, p. 240]

Yjc - a)Yia)

Yic)

Yil + b-c)
= -¿-- l\c - a)w'-eil - wy^Fic -a,l-a,l+b-a; w'1)

1(1 +b — a)

r(l + b - c)Yia)    .
+ —-— eimw~aFia, l+a-c,l+a + b-c;l- w"1),

F(l + a + b — c)

Im tr>0, we can write f{}) of (2) as

r = (c(^) = Í4"(^);:)

zx=z\2Aj, z2=z\2(Ai—x), where the cf are finite linear combinations

of hypergeometric functions whose coefficients are ratios of Gamma

functions, k=l, 2. We now consider the defining series forh^f, k=l, 2,

of (3) (for convergence (uniform), analyticity, and analytic continuation

with respect to x and y). Let y be extended to complex values. Fix x

in (21 = {x|0<í/^|x|^MJ|-<:/, d sufficiently small, 77r/6^arg x^5tt/6, x

complex}. From an estimate of the remainder term for F when we con-

sider the behavior of F for large/» [7, p. 235] and the asymptotics for the

ratio of two Gamma functions [5, p. 47], we obtain

(4) Um\cf(p,xlAi)\-v>'= 1
J>-*00

(the radius of convergence of the Taylor series in (3) when zx and z2

are temporarily considered as independent variables), uniformly for x

in Qx, k=l, 2,

(5) |arg(cf(/», xfA}))\ < d,       tt/2 > d > 0,

p sufficiently large, uniformly for x in Qx, k=l, 2 (we subtract out non-

zero constant arguments),

(6) c\k)(p = xx + iyx, x/Aj)
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is analytic in p in the half plane x^O, x in Qx, k=l, 2. (This is a con-

sequence of the analyticity of the Gamma function and the hypergeo-

metric function in its parameters.)

(7) \cfip = reia, x\AA\ < ed\

d>0 and arbitrarily small, r>0 and sufficiently large, uniformly for

|a|^7r/2 and x in Qu k=l, 2. We obtain (7) from an estimate for the

remainder term for F for large p (complex), |arg/z|^7r/2 [7, p. 235],

noting the definition of the cf in (3), (2), and the formula stated after (2).

Lemma 1. (2x;, 2y}) and (fx,-, 2y¡) are singular points, respectively,

of h'? and h^ of il).

Proof of Lemma 1. (4) and (5) satisfy the conditions of a theorem

of Dienes [5, p. 227], which in turn implies Lemma 1. (Note we are

fixing x in Qx and considering y as an independent complex variable.)

Lemma 2. (2¿»x,, 2by¡) and (2cx;/(l+2c), 2cy¡), b, c^l and arbitrary,

are the only possible singular points in W, respectively, of //j1' and h{2) of

(3), x in Qx.

Proof of Lemma 2. (6) and (7) satisfy the conditions of a theorem

of LeRoy and Lindelof [5, p. 340] which in turn implies zx = b, z2 = c,

b, c^l are the only possible singular points of the Taylor series in (3).

Hence Lemma 2 holds.

Lemma 3.    (fx,, 2y¡) is a regular point of h^ of Ci).

Proof of Lemma 3. Let x, y be independent complex variables.

We can then find nonempty disc neighborhoods Nix), Niy) with centers

at x = fx3 andy=y0, 0<y0S2yj such that the general term /)"'(/», x, y) =

cl¡1)(p,x¡AA((x-\-iy)l2A])ri, p~ko, of (3) is analytic for x in N(x) and y

in N(y) and such that the defining series for //j1', 2£U T){1)(p, x, y),

converges uniformly on compact sets Qi^N(x), Q2^Niy) since the

asymptotics for F for large/» [7, p. 235] and those for the Gamma function

[6, p. 47] imply we can uniformly dominate 2£L0 Dy\p, x,y). Hence we

conclude hf] is analytic at (fx,-, 2y,). This completes the proof of Lemma 3.

Lemma 4.    (2x3-, 2ys) is a regular point of hf\x, y) of (3).

Proof of Lemma 4. We proceed as in the proof of Lemma 3 and thus

conclude hf\x, y) is analytic for x in Nx(x) and y in Nx(y) with centers

respectively at x=2x3- and y=y0, 0<y0<2y. Hence by a theorem of

Hartogs (extension theorem) [3, p. 141], we conclude hf\x,y) is analytic

at (2x3, 2y¡). (Note we are fixing x in Nx(x) with center at 2x, and extending



19741 LOCATION   OF  SINGULARITIES 161

analytically in y, hf\x,y), this is permissible by a theorem of Leroy and

Lindelöf [5, p. 340].) This completes the proof of Lemma 4.

Lemma 5. g3(x, y) of (2) is singular at the points (fx3, 2y¡), (2x¡, 2y¡),

\SiSn.

Proof of Lemma 5. The conditions imposed on the x¡ in the hy-

pothesis of Theorem 1 imply fx3, 2x3 are in the domain of regularity

of a2ip, xjAA, p>l, of (2). We can find nonempty neighborhoods N2(x)

and N2(y) with centers respectively at x = fx3-, 2x¡ and y=2y¡ such that

fi2)(x, y) of (2) is analytic at (2x3-, 2y¡), (fx3-, 2y¡) (we majorize the series

for/}2'). Lemmas 1, 2, 3, and 4 imply the singular points (2x3, 2y¡) and

(fx3, 2yA respectively of //"'(x,y) and hf\x,y) are not removed under

addition of//j-1' to h¡s) of (3). Hence from (2) we obtain the conclusion of

Lemma 5.

Lemma 6. Let g(x,y)=YH=igi(x,y) (permissible by the linearity

of P2(f)), (x,y) in D (see Theorem I for the definition of D). Then g(x,y)

is analytic for all (x,y) in D and is singular at the points (fx3-, 2y}), (2x¡, 2y¡),

ISjSn.

Proof of Lemma 6. Consider the term g}ix,y), j0 fixed, lSj0Sn.

The conditions imposed on the x¡ in Theorem 1 imply fx3, 2x3, 1 SjSn,

are in the domain of regularity of a2ip, x[A,) of (2), p'Stl. Consider the

finite sequence g3(x,j>), lSjSn,j^j0. The methods of proof in Lemmas

3, 4, and 5 and the conditions imposed on the x3 in the hypothesis of

Theorem 1 imply (fx3o, 2yh), (2xh,2yh) are regular points of g¡(x,y),

ISjSn, /Vy'o- Hence the finite sum 2"-i;í#i, g¡(x^y) 1S analytic at

(fx3o,2_y3o), (2x3o, 2y¡ ). Lemma 5 then implies the second part of Lemma 6.

Let

R¡ = i(x,y) | (x,y) in W, f |x3| < |x| < \A,\, 0<y< 2j3},

53 = {(x, y) | (x,y) in W, f \xA > \x\ > 0},       Z)3 = R, u Sjt

F, = {(x,y) | (x, y) in W, 0 < \x\ < \A,\ = M}.

Then, as in the proof of Lemma 5,/'2)(x, y) of (2) is analytic for all

(x, y) in F3, TJc: 7\. Proceeding then as in the proofs of Lemmas 3, 4, and

5, we conclude g3(x,j») is analytic for all (x,y) in Z)3, ISjSn. Since

F><= n?=i A' we conclude the first part of Lemma 6.

Since Lemma 6 is a statement of Theorem 1, this completes the proof

of Theorem 1.

Proof of Theorem 2. Let x be fixed and in Q of Theorem 2. Let

gj(x,y) be the general term in the hypothesis of Lemma 6. (5) and (6)

in the proof of Theorem 1 imply hf\x,y), k=l, 2, of (3) satisfy the
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conditions of a theorem of Lindelöf [5, p. 343]. This theorem implies

hf\x,y)~>0 as _y~>-oo uniformly for x in Q, ix,y) in W. (Note all x in

Q are in the domain of regularity of a2(p, x/AA, /»^l, of (2).) Hence

ff \x, y) (of (2))->-0 as j-»-oo, uniformly for x in Q, (x, y) in W (2) and

the definition of g(x,y) as the finite sum 2"=ii?3(x, j)> (x,y) in F> (see

Lemma 6 of Theorem 1), then imply Theorem 2.

We note in closing, D. Colton and R. Gilbert in [4] give necessary

and sufficient conditions for ä point z to be a singular point of Bergman's

operator of the first kind (see [2]). However, our problem of mapping

rational functions into solutions of the above partial differential equation

and then investigating the singularities of the mapped solution seems to

have not been treated via the Bergman operator of the second kind.
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