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HOMOTOPY  GROUPS  OF THE  ISOTROPY  GROUPS

OF  ANNULUS

JONG   P.   LEE

Abstract. We compute the isotopy groups of various sub-

spaces of the isotropy group at an interior point of an annulus.

We also prove that if a and x are interior points of a disk D, then

TTa[H(D-a,x)]=Z, and nn[H(D-a, x)l=0 for »/^l where

H(D—a, x) is the isotropy group at x.

1. Introduction. Let A' be a topological space, and let H(X) denote

the group of homeomorphisms of Aconto itself topologized by the compact

open topology. The isotropy group at x e X will be denoted by

H(X, x) = {h e H(X)\h(x)=x}. The arc-component of the identity H0iX)

is a normal subgroup of HiX) and H(X)jH0(X)=tt0[H(X)] is the group

of the arc-components of H(X), which is called the isotopy group of

H(X). The isotopy groups for the subspaces of H(X) are similarly de-

fined. In this note we compute the isotopy groups of various subspaces of

the isotropy group at an interior point of an annulus, and Trn{H(D — a, x)]

for n^.0 where D is a disk and a, x e lnt(D).

2. Preliminaries. We state some fundamental lemmas which will

be needed in the sequel.

Lemma 2.1. The space of homeomorphisms of a closed n-cell onto

itself which leave the boundary of the n-cell pointwise fixed is contract ¡ble

[l,p.406].

Lemma 2.2. The space of homeomorphisms of an annulus onto itself,

which leave one of the boundary curves pointwise fixed, is contractible

[4, p. 526].

Lemma 2.3.    If A is an annulus, then tT0[H(A)]=Z2xZ2 [6, p. 924].

Definition 2.4. An isotopy between imbeddings /0 and /,, defined

on a space X into a space Y, is a continuous map G:Xxl^-Y such that

the function Gt defined by Gt(x) = G(x, t) is a homeomorphism for each
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fe/=[0, 1], and for all xeX, G(x,0)=f0(x) and G(x, l)=fx(x). If

each Gt is also surjective and G0 is the identity, then G is an ambient

isotopy. An isotopy which moves no point on Bd(A') is called a S-isotopy.

h^g [// ^ßg] will denote that // is isotopic [ß-isotopic] to g.

Lemma 2.5. Letfo, fo be imbeddings of S1 in Int(A) such that fo~fo:
S1, * -+X, * , where X is a 2-manifold. IffoS1) does not bound a disk or

Möbius band in X, then there is an ambient isotopy between fo and fo

keeping the base point fixed and which is fixed outside a compact subset

of lnt(X) [2, p. 91].

Let A=SlxI and H2(A) = {h e H(A)\h = e on Bd(/4)}. H. Gluck [3]

defined the winding number for a homeomorphism // e H2(A) as follows.

Let r¡ be the isomorphism of 7rx(Sl, 0) with Z which takes the class of the

path f(t) = t onto 1. Let oc be any path in Slxl from (0,0) to (0, 1) and

Px:Sl x I—^S1 the natural projection. Then Px(v.) is a closed path in S1

based at 0. Hence [Px(ol)] is an element oftr^S1, 0) and ^([F1(a)]) = cj(a)

is an integer. The integer co(//a) — co(a) is independent of the path a for

any h e H2(A).

Definition 2.6. Let // be a homeomorphism in H2(A) and a a path

in A from (0,0) to (0, 1). Then the integer W[h; A] = co(h«.)-co(ot) is

called the winding number of// on A.

We note that W defines a homomorphism W: H2(A)-^Z. But it is

shown that the kernel of W is the arc-component of the identity H\(A)

and thus (Fis in fact an isomorphism of H2(A) onto Z [3, p. 314].

The space H(X) of a manifold X is a fiber bundle over Int(X) with fiber

H(X, x). The homotopy sequence of this bundle is exact and McCarty

[5] obtained the following exact sequence which is called the homeotopy

exact sequence of X,

■ ■ ■ -iX n„ ,X(X, x) ±+ tt„[H(X, x)] -ÍL*. nn[HiX)] -^ nn(X, x) —► • • •

-V 7TX(X, X) -^ 7T0[H(X, X)] ^ 7T0[H(X)] -^ 0,

where, if X is locally compact, locally connected and Hausdorff,

P*(ttx[H(X)]) is the center of frx(X, x) [5, p. 302].

3. Isotopy groups. In what follows A will denote an annulus which

we take as the cylinder Sxxl with the notations C1 = S'1x0and C2 = 51X 1,

A1=S1x[0, £] and A^S^lh 1].

Theorem 3.1.    Let a be an interior point of A. Then

(i) 7r0[HiA, a)]=Z2xZ2,

(ii) -rr^H^A, a)]=Z, where H\A, a) = {h e H(A, a)\h=e on Cx},

(iii) 7r0[/Y2(^,c/)]=ZxZ,ir//e/-t'/Y2(/l,i/) = {/!6//(/l,a)|// = eo//C1UC2}.
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Proof, (i) In the homeotopy exact sequence of A, P^:trx[H(A)]^-

TTx(A,a) is onto. Thus the sequence yields tt0[H(A, a)]=tr0[H(A)] and

(i) holds by Lemma 2.3.

(ii) Let a = (0, £) and y be the closed arc Sxx% in A. We note that

every // e HX(A, a) is orientation preserving on A since it is the identity

on the boundary curve Cx. Thus h(y) does not bound a disk or Möbius

band and //(y)~y fixing the point a, since the homotopy group ttx(A, a)=Z

has only the identity and inverse automorphisms and // must induce the

identity automorphism of trx(A, a). Lemma 2.5 implies that there is an

ambient isotopy Gt:A, a-*A, a (OStSl) such that G0=e and Gx=h on y.

Since Gx1h = e on y, Lemma 2.2 implies that G7V/|/l2:^e on A2 by an

isotopy which is the identity on the closed arc y and moves only on the

boundary curve C2.

In Ax, since Gx1h = e on yUCx, the isotopy classes of the restricted

homeomorphisms {Gr1//^,}, for all h e HX(A, a) and the above defined

homeomorphisms G,, are Z classified by the winding numbers

{WIG^I^A^A^}. Buta homeomorphism Gr1//such that W[Gxlh\Ax; Ax]j±

0 cannot be isotopic to the identity on A=AXKJA2, since the isotopy

in HX(A, a) leaves C,U{a} pointwise fixed. Thus the isotopy classes of the

collection of all such homeomorphisms G71// on A are Z. But since Gx

is 5-isotopic to the identity fixing the point a, we have w0[H1iA, a)]^

7T0[{G7Vz}j and the isotopy group is Z.

(iii) We note that, for every h e H2iA, a), there is a homeomorphism g

such that g ^B e on A and g"1h = e on yUC,uC2 by Lemma 2.5. The

collection of the restricted homeomorphisms {g_1/z|/4¿}, for all h e H2(A, a)

and the homeomorphisms g, generates the isotopy classes Z for /'= 1, 2 by

arguments similar to that of the proof of (ii). Since the homeomorphisms

g are 5-isotopic to the identity fixing the point a, we have tt0[H2(A, a)]^

'"'olig"1"}] and thus the isotopy group is ZxZ.

In the following theorem, the solution for the case n=0 partially answers

a question raised by Quintas [6, p. 932].

Theorem 3.2. Let D be a disk and a, x be two different points in

lnt(D). Then

7Tn[H(D - a, x)] = Z2    ifn = 0,

= 0     ifn ^ 1.

Proof. For the case n = 0, for simplicity we consider 51x(0, 1]

for D — a and let x = (0, \) and C=51xl. We first show that every

// e H+(D — a, x) is isotopic to the identity by an isotopy in H+(D — a, x),

where H+(D—a, x) is the collection of the orientation preserving homeo-

morphisms   in   H(D — a,x).   Denote   y = S1xJ,   Bx = S1x(0, |]   and
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B2=S1x [J, 1]. Then it can be seen that h(y) does not bound a disk or

Möbius band and //(y)~y fixing the point x. Thus by Lemma 2.5, there

is an ambient isotopy Gt: D — a, x^-D — a, x (OStSl) such that G0 = e

and Gx1h = e on the arc y. Now observe that the restricted homeomorphism

Gx1h\B1 is isotopic to the identity on Bx. We can regard Gx^h as a homeo-

morphism of a disk onto itself fixing one interior base point [5, Lemma

4.2]. Thus Lemma 2.1 implies that the homeomorphism G71// is isotopic

to the identity on the disk by an isotopy fixing the base point and the

boundary y pointwise. In B2, by Lemma 2.2, it can be seen that the re-

stricted homeomorphism G^I^B., is also isotopic to the identity on B2 by

an isotopy fixing the closed arc y pointwise and moving on the boundary

C. Thus G71/? is isotopic to the identity on D — a by an isotopy fixing the

point x, and thus the homeomorphism h is isotopic to the identity in

H+(D — a, a). Hence we see that

tt0[H(D - a, .y)] = H(D - a, x)¡H+(D - a, x) ça: Z2

which completes the proof for the case // = 0.

For the case /z^l we consider the homeotopy exact sequence. The

sequence for D — a yields ir„[H(D — a)] = tT„[H(D — a, x)] for n^.2 since

Tr„(D-a,x) = 0 for n>2, and thus 7rn[H(D-a, x)]=0 for «^2 [6,

Theorem 5.1]. For trx[H(D — a, x)] we consider the end of the exact

sequence,

-► n2(D - a, x) - rrx[H(D - a, a)] -* ttx[H(D - a)]

-* ttx(D - a, x) -* tt0[H(D - a, a)] -*■ tr0[H(D - a)] -+ 0

which is explicitly as follows.

->0^->ttx{H(D - a,x)]-^Z^-Z^Z2^ Z2 ^- 0.

In this sequence, since P* [trx(H(D—a))] is the center of trx(D—a, x)=Z,

P* is an epimorphism which implies that it is in fact an isomorphism.

ThuskerP#=0and/^[irx(HiD-a,x))]=0. Hence keriil:=tTx[H{D-a,x)],

and since d^[TT2(D — a, x)] = 0, we obtain the result ttx[H(D — a, ,v)]=0.

This completes the proof.
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