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ON  in, «)-ZEROS   OF  SOLUTIONS   OF  LINEAR
DIFFERENTIAL  EQUATIONS   OF  ORDER  2«

JERRY   R.   RIDENHOUR

Abstract. Sufficient conditions on the coefficients p2„,

Pín-i, ' ' • ,/»o are given which guarantee that no nontrivial solution

of/72„_yl2",+/»2„_iV,;!"~1,-r-- • ■+/»o/=Ohas two distinct zeros each of

order at least n. These conditions are in the form of n inequalities

which are satisfied by linear combinations of the coefficients and

their derivatives.

We study the real (2«)th order linear differential equation

(1) />2„(%(2"> + P2n-i(x)y{2n-^ + ■■■+ Po(x)y = 0

on an interval I where p2„(x)>0 for all x e I and pi e 0(I) for i=0, 1, ■ • • ,

2n.

As usual, letym(x)=y(x) and let (¿) = (/!)/[£!(/—k)\] for all nonnegative

integers j and k with i^.k. A nontrivial solutiony(x) of (1) is said to have

(n, «)-zeros in I if there exist two distinct points xx and x2 in I with

y»)(x,.) = 0, ;'=1, 2;j=0, 1, ■ • • ,n—l. Let (Q0) be the inequality

(Qo) 2(- l)>0(x) + 2 (- 1)***J»?'(*) ^ 0       (x g 7)
Jc=l

and, for each / with !</<«—1, let (Q¡) be the inequality

2n-2i

(Qi) !'<-'>-[('rK-T1):riK*(*)^o     (x6/).

Theorem 1, the main result of this work, shows that no nontrivial

solution of (1) has (n, «)-zeros in I provided that the coefficients in (1)

satisfy the n inequalities (Qt), i=0, 1, • • • ,n— 1. The works of many

authors relate in some way to the existence or nonexistence of solutions

of (1) having (n, n)-zeros. Some specific references are Leighton and Nehari

[5], Barrett [1], Reid [8], Hunt [4], Levin [6], Coppel [2], and Swanson
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[9]. An important aspect of the work of this paper is that the main theorem

is proved without assuming equation (1) is selfadjoint while most of the

work done to date requires selfadjointness.

Two corollaries are given, the first being an application of Theorem 1

to selfadjoint equations—an application which yields a well-known

result. Corollary 2 is a factorization result. Aside from the classical paper

of Pólya [7], some more recent work on factorization has been done by

Barrett [1], Heinz [3], and Zettl [10], [11], [12].

The proof of Theorem 1 is an extension of the method employed by

Leighton and Nehari [5] to show that no nontrivial solution of

(2)    (r(x)y")" + p(x)y = 0,       r(x) > 0, pix) > 0, r e C2H),p e C(7),

has two double zeros. They proved this result by displaying, for each

solution yix) of (2), an auxiliary function <f>y(x) which is strictly increasing

on I and is zero at each point of / where y(x) has a double zero.

Theorem 1. If the coefficients p2n,p2n-i> ' ' " > fo '" 0) satisfy (Q¡)
for OSiSn—l, then no nontrivial solution of (I) has (n, n)-zeros in I.

Proof. For each nontrivial solution y(x) of (1), let <j>v(x) be the

auxiliary function defined by

<f>y(x) = amn_x)(x)p2n(x)y(x)y{2n-1)(x)

+*2a0¿x)yix)y(i)ix) + £ "f ¡a^x)ywix)yu\x)
¡=0 ¿=1      i = i

where the functions aH,j=0, ■ ■ ■ , n— 1 ; i=j, ■ ■ ■ ,2n—l—j, will be

determined later. Note that, if yix) is a solution of (1) which has a zero

of order at least n at a point a el, then <j>vid) = 0.

We will now exhibit a choice of the aí¿'s which makes <j>y(x) nondecreas-

ing as x increases in /. Supposing each aH is differentiable, we see that

the derivative of <f>y is

<p'y = (a0i2n-i)P2nyyyl2n~1)+ «•«„-»Pi»/.»''**-"

... + f (-«o^-uW*') + 2 &Wfl + ««//'■ + amyy{i+1)]
(4) i-=o ¿=o

+ I2nT^yU)y{i) + anyu+1)yU) + ««/Vm,l.

After collecting terms, we let AH (j=0, ■ ■ ■ , n; i=j, • ■ • , 2n—j) be the

expression which is the coefficient of yb)yU) in the right-hand side of

(4) (take A0{2n)=0 since yy{2ni does not appear in the right-hand side of

(4))-
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We now show it is possible to choose the aH's so that AH(x) = 0 when

r#/ and AH(x)^0 when i=j for all .v el; therefore, with this choice of

the aH's, we will have (p'y(x)^.0 for all x el. Since we want AH = 0 for

iftj, the o,¿'s must satisfy a system of simultaneous equations. Letting

(Eu) for iyéj represent the equation AH=0, we obtain the system

(£oi) 2a00      + a'ox —   a0i2n_x)px    = 0

(£02) floi + tfo2 —    «0(2»-l)Ps    = 0

(£o(2n-l>) flU(27i-2) + (a0(in-l)Ptn)' ~ a0(2n-l)P2n-l ~ 0

(F12) a02 + 2axx + a'X2 =0

(Eu) a03 + a12 + a¡3 =0

(£l(2n-2)) fl0(2n-2) + fll(2n-3) + al(2n-2) = 0

(£■1(271-1)) a0i2n-l)P2n + fll(2n-2) = 0

(F23) fl18 + 2a22 + fl23 =0

(F24) aXi + a23 + s» = 0

(£•2(271-3)) al(2n-3) + a2(2n-4) + a2(2n-3) = 0

(£•2(211-2)) fll(27i-2)       + a2<2n-3) —  0

(£-(n-2)(n-l>) a(7i-3)(7i-l)   +    ^-a{n-2)tn-2)    +     a(7i-2)(n-l)     = 0

(£(7!-2)r¡)                       a(n-3)7l +      a(7i-2)(7i-l) +          fl(7l-2)7l =  0

(£-(ti-2)(71+1)) fl(n-3)(7i+l) +         a(n-2)7i + a (71-2X71+1)        = 0

(£•(71-2X71+2)) a(7l-3)(7i+2) +      a(7i-2)(7l+l) =  0

(£■(71-1)71)            a(7i-2)n + 2a(n_1)(n_1) +    a'{„_x)n = 0

(£•(71-1X71+1)) a(71-2)(71+l) +             a(il-l)71 =   0
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We obtain a solution of this system by setting a{n_Vn=p2n. It then

follows from equations (Ein_jHn+j)) (Jml, • •• ,n-2) that a^^^ =

/_l)7i-i+i^2n (/=L • • • J n— 1). Equation iEU2n_x)) then implies that

öo(27i-D = ( —1)"+1. We now use consecutively equations (F0(2m_1)),

(£'o(2»-2)), - ■ ■ , (Eoi) to solve for a0(2„-2)> «o(2„-3), • - ' , a00. Then we use

equations (Exi2n_2)), (El{2n_3)), ■■■, (F,2) to determine ax(2n^3), a1(2„_4),

au. Continuing in the same fashion, we are able to find all the aH's.

Summarizing these calculations, we see that

(5) 01(2,1-1-7) = (-l)n"mF2n   for /= 1, •■•,«- 1,

(6) ao(27i-D = (-l)n+1,

2n-i-i-l / ; 4-  k\

««- 2 i-ir^(J\ *ku.(7) S \    fc    /

for 0 S j < i and ¡' + y < 2n — 1,
and finally that

(g)     ««-fTc-D^^Ct^^   forO^i^n-1.

Let the a3,'s be chosen as in (5), (6), (7), and (8). Then <f>'y as expressed

in (4) reduces to

«o - a0(2n_x)Po)y2 + 2 (ö(*-D* + ßtt)^'*']2 + 0<7,-i)»Lf'"']2.
*=i

However, it can be seen that, for each y with OSjSn—l, 2A¡¡ is the left-

hand side of the inequality (Q,). Therefore, we see from the hypothesis

together with Annix)=p2nix)>0 for all x e I that r/>¿(;t)=0 for x e I.

Suppose now that there exists a nontrivial solution yix) of (1) which

has in, «)-zeros in I and let xx and x2 be points in I with Xj<x2 and

y ;)(*,.)=0 0=1, 2; y=0, ■■• ,n-l). Then ^(x)=0 for all x e [xlt x2]

since <f>yixx) = <f>yix2)=0. However, this implies j<"'(x)=0 for all x e

lxx, x2] which is impossible and completes the proof.

As already mentioned, the following corollary is well known and the

proof is usually by variational techniques. It is valid under the less re-

strictive hypothesis that />,- g C'(7) rather than pt e C2i(7) (for a proof,

see Theorem 18 on p. 77 of [2]).

Corollary 1. Suppose pt e C2\I) (z'=0, • ■ • , n) and, for all x e I,

/j¡(x)_0 (/=0, • • • , n—l) and /»„(,v)>0. Then no nontrivial solution of

(9)
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the selfadjoint equation

(io) t(-i)klPk(^yM]M = o
¡t=0

has in, n)-zeros in I.

Proof. The proof follows by expanding the left-hand side of (10) and

applying Theorem 1 directly to the resulting equation. The details are

omitted.

We now prove the already-mentioned Corollary 2.

Corollary 2. Suppose 1= la, b) and J=ia, b). If p0, ■ ■ • ,p2n where

Pi e Oil) satisfy p2n(x)>0 (x e I) and inequalities (Q,) ij=0, ■ • ■ , n— 1),

then the (2n)th order operator L defined for y e C2n(I) by

Ey = p2nyi2n) + />2„-i Z2"-1» + ■■■ +p0y

has a factorization on J of the form L = LXL2 where Lx and L2 are both

normal nth order linear differential operators on J.

Proof. Let y¡(x) for 1 SjSn be the n linearly independent solutions

of Ly=0 which satisfy the initial conditions y^)id) = à{n+j_XH (j'=l, • • • ,

n; i=0, ■ • ■ ,2n—l) where ômk=l if m=k and ômk=0 if m^k. Let

Wnix) be the Wronskian matrix (a¿J) where a„ = i»f_1,(x) for i=l, ■ ■ • , n;

j=l, •••,«. If Wnib) = 0 for some beJ, then a nontrivial solution

yix) of (1) can be found which satisfies y(*'(a) = 0 = y(*'(6) for k=0, • ■ • ,

n—l thus contradicting Theorem 1. Therefore, Wnix)¿¿0 for all xeJ

and, by a theorem of Zettl [10], L has a factorization such as we desire

on the interval /.

We remark that the same proof shows Corollary 2 is valid with /= [a, b]

and J=ia, b]. Furthermore, the same type of proof shows that if no solu-

tion of an «th order linear differential equation has (n—k, k)-zeros in

la, b) (or [a, b]) where 0<rc<«, then the associated operator L has a

factorization L = LXL2 on (a, b) (or (a, b]) where Lx is of order n—k

and L2 is of order k.

We conclude by exhibiting an easy way to construct inequalities (Q0),

(Öi)> " ' ' > (Ôn-i)- Construct the rectangular array

2 1111

2 3     4     5     6

2 5     9    14   20

2 7    16    30    50
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where the element ba in the /th row andyth column is given by biX=2

(('=1,2, 3, ■ • •), bij=l (j=2, 3,4, • • •), and bn = b{i_x)j + biU_v when
/>1 andy>l. Note that this is a "Pascal's triangle" of sorts where an

interior element is obtained by adding the element immediately to the

left of the given element to the element immediately above the given

element.

The absolute values of the coefficients in the inequality (g,) where

OSiSn— 1 can be seen to be the first 2n—2i+l numbers in the /th row

of this array. The remaining information necessary to write iQA is easily

determined. For example, when 2« = 6, iQ0), (Qx), and (Q2) reduce to

-2p0 + p[- p"2 + p3" - p^ + pl5) - /»<6) = 0,

2p2 - 3p3 + 4pl - 5p'¿' + 6j»<4) = 0,    and

—2pt + 5/»5 — 9/»'é = 0,   respectively.
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