CONVOLUTIONS OF CONTINUOUS MEASURES AND SUMS OF AN INDEPENDENT SET

JAMES MICHAEL RAGO¹

ABSTRACT. Let E be a compact independent subset of an l.c.a. group G; μ_1, \dots, μ_{n+1} continuous regular bounded Borel measures on G; and k_1, \dots, k_n integers. Let $k_i \times E = \{k_i x | x \in E\}$. We prove (1) $\mu_1 \ast \cdots \ast \mu_{n+1}(k_1 \times E + \dots + k_n \times E) = 0$ (the proof is a combinatorial argument).

As a corollary of (1) we obtain (2) if H is any closed nondiscrete subgroup of G, then the intersection of H with the group generated by E has zero H-Haar measure.

1. In [2, Theorem 2], Hartman and Ryll-Nardzewski showed neatly that if μ_1 and μ_2 are continuous bounded measures on *T*, the circle group, and $E \subset T$ is a compact independent subset of *T*, then $\mu_1 * \mu_2(E)=0$. In a more complicated manner, Salinger and Varopoulos proved this result for any metrizable group *G* in [4, Theorem 1]. We prove a generalization of this theorem which holds for an arbitrary nondiscrete l.c.a. group *G*.

We denote by Z the set of all integers, $Z^+ = \{k \in Z | k > 0\}$. A set $E \subset G$ is independent if the equation $k_1e_1 + \cdots + k_ne_n = 0$, $k_i \in Z$, $e_i \in E$, yields $k_ie_i = 0$ for all $i = 1, \dots, n$ or the e_i 's are not distinct. Note that an independent set may contain 0. We set $k \times E = \{ke | e \in E\}$, and nE = $\{e_1 + \cdots + e_n | e_i \in E\}$ for $k \in Z$, $n \in Z^+$; $E_1 + E_2 = \{e_1 + e_2 | e_1 \in E_1, e_2 \in E_2\}$. M(G) is the set of bounded regular Borel measures on G.

Here is our main result.

THEOREM. If G is a locally compact abelian group, $E \subseteq G$ a compact independent subset, $\mu_1, \dots, \mu_{n+1} \in M(G)$ positive continuous measures, $k_i \in Z$, $i=1, \dots, n$, and $x_0 \in G$, then

 $\mu_1 * \cdots * \mu_{n+1}(k_1 \times E + \cdots + k_n \times E - x_0) = 0.$

At the end of the proof of the theorem, we will derive the following corollary:

COROLLARY. If G is an l.c.a. group, $H \subseteq G$ is a closed nondiscret e subgroup with Haar measure $h, x_0 \in G$, and $E \subseteq G$ is compact independent, then $h[(GpE-x_0) \cap H]=0$, where $GpE=\bigcup_{n=1}^{\infty} n(E \cup -E)$.

© American Mathematical Society 1974

Received by the editors June 12, 1973.

AMS (MOS) subject classifications (1970). Primary 43A05.

Key words and phrases. Compact independent set, Haar measure.

¹ This work formed a part of the author's Ph.D. dissertation, which was written at Northwestern University under the supervision of Colin C. Graham.

2. **Proof of Theorem.** The proof is by induction. If n=1, we follow the proof of [2, Theorem 2]. Suppose $k_1=1$. By definition,

(1)
$$\mu_1 * \mu_2(E) = \int_G \mu_1(E - x) \, d\mu_2(x).$$

For $x_1 \neq x_2$, suppose there is a fixed element $y_0 \in E - x_1 \cap E - x_2$; then $y_0 = e_0 - x_1 = f_0 - x_2$, where $e_0, f_0 \in E$ are fixed. Hence,

(2.1)
$$x_1 + y_0 = e_0;$$

$$(2.2) x_2 + y_0 = f_0.$$

If $y \in E - x_1 \cap E - x_2$ is arbitrary, then $y = e - x_1 = f - x_2$ for certain $e, f \in E$, so

(2.3)
$$x_1 + y = e;$$

(2.4)
$$x_2 + y = f.$$

The equation (symbolically written) (2.1)-(2.2)=(2.3)-(2.4) yields $e_0-f_0=e-f$. Since either e_0 or f_0 is nonzero (otherwise $x_1=x_2$), the independence of E requires one of the following four possibilities: $e_0=e$, $e_0=f$, $f_0=e$, or $f_0=f$. By (2.3) and (2.4), these imply

$$y = e_0 - x_1, y = f_0 - x_1, y = e_0 - x_2$$
, or $y = f_0 - x_2$

respectively. Since e_0 , f_0 , x_1 , and x_2 are fixed, this shows

$$\operatorname{card}[E - x_1 \cap E - x_2] \leq 4$$

and $\mu_1(E-x_1 \cap E-x_2)=0$, by continuity of μ_1 . (Since $e_0-x_1=f_0-x_2=y_0$, we actually have card ≤ 3 .) The set of x with $\mu_1(E-x)>0$ is then countable, since it is easy to see that otherwise $\|\mu_1\| = \infty$. Hence by (1) and the continuity of μ_2 , we have $\mu_1 * \mu_2(E)=0$. If $x_0 \in G$, $\mu_1 * \mu_2(E-x_0)=[(\delta_{x_0} * \mu_1) * \mu_2]=0$, where δ_{x_0} is the point mass at x_0 . Finally, in the case $k_1 \neq 1, k_1 \times E$ is also compact independent, so the Theorem holds for n=1.

We now suppose the Theorem holds for n-1 and all $k_1, \dots, k_{n-1} \in Z$; we show it holds for *n*. Let $\mu_1, \dots, \mu_{n+1}, k_1, \dots, k_n$ and x_0 be given. Suppose

(3)
$$\mu_1 * \cdots * \mu_{n+1}(k_1 \times E + \cdots + k_n \times E) = \delta > 0.$$

LEMMA. E may be written as the finite disjoint union of Borel sets E_i , $i=1, \dots, p$, such that for some choice of integers $i_1, \dots, i_n, 0 \leq i_1 < \dots < i_n \leq p$, we have

(4)
$$\mu_1 * \cdots * \mu_{n+1}(k_1 \times E_{i_1} + \cdots + k_n \times E_{i_n}) > 0.$$

PROOF OF LEMMA. We first set $k = \sum_{i=1}^{n} |k_i|$. By the inductive hypothesis of the Theorem, for each choice of integers l_1, \dots, l_{n-1} , we have

$$\mu_1 \ast \cdots \ast (\mu_n \ast \mu_{n+1}) \left(\sum_{i=1}^{n-1} l_i \times E \right) = 0.$$

Containing each set $\sum_{1}^{n-1} l_i \times E$ there is, therefore, by the regularity of $\mu_1 * \cdots * \mu_{n+1}$, an open set $U_{l_1,\dots,l_{n-1}}$ with $\sum l_i \times E \subseteq U_{l_1,\dots,l_{n-1}}$, and

(5)
$$\mu_1 * \cdots * \mu_{n+1}(U_{l_1,\ldots,l_{n-1}}) < \delta/A,$$

where A is the number of possible choices of l_1, \dots, l_{n-1} with $\sum_{1}^{n-1} |l_i| \leq k$. (For example, $A \leq (2k+1)^{n-1}$.)

For each $U_{l_1,\dots,l_{n-1}}$, there is a relatively compact neighborhood V of 0 such that

(6)
$$\sum_{1}^{n-1} l_i \times E + k \bar{V} \subseteq U_{l_1, \cdots, l_{n-1}},$$

by compactness. Taking (finite) intersections when necessary, we may assume (6) holds with one V for all choices of (l_1, \dots, l_{n-1}) with $\sum_{i=1}^{n-1} |l_i| \leq k$.

Since E is compact, it is covered by finitely many (say p) neighborhoods $(e_i+V)\cap E$, with $e_i \in E$, $i=1, \dots, p$ (p depending on V). Define $E_1 = (e_1 + \overline{V}) \cap E$,

$$E_i = (e_i + \bar{V}) \cap E \setminus (E_1 \cup \cdots \cup E_{i-1}), \quad i = 2, \cdots, p,$$

so the E_i 's are disjoint Borel sets with union E. Each set of the form

(7) $F = k_1 \times E_{i_1} + \dots + k_n \times E_{i_n}, \quad 1 \leq i_1, \dots, i_n \leq p,$

is Borel. We claim that at least one of the sets of form (7), with $i_1 < \cdots < i_n$ all distinct, has strictly positive $\mu_1 * \cdots * \mu_{n+1}$ -measure. This will prove the lemma.

Indeed, consider any set of form (7) with at least two subscripts equal, say $i_1 = i_2$. It may then be written

$$F = k_1 \times E_{i_1} + k_2 \times E_{i_1} + k_3 \times E_{i_3} + \dots + k_n \times E_{i_n}$$

$$\subset k_1 \times (e_{i_1} + \bar{V}) + k_2 \times (e_{i_1} + \bar{V}) + k_3 \times (e_{i_3} + \bar{V}) + \dots + k_n \times (e_{i_n} + \bar{V})$$

$$= (k_1 + k_2) \times E + \dots + k_n \times E + k\bar{V}$$

$$\subset U_{(k_1 + k_2, k_3, \dots, k_n)}$$

by (6). Hence the union of such sets (with two subscripts equal) is contained in the union of the (A) sets $U_{l_1,\dots,l_{n-1}}$, and thus has $\mu_1 * \cdots * \mu_{n+1}$ -measure less than δ , by (5). This completes the proof of the Lemma. For convenience we will assume, relabelling if necessary, that $i_1 = 1, \dots, i_n = n$. We write

(8)
$$\mu_1 * \cdots * \mu_{n+1} \left(\sum_{i=1}^n k_i \times E_i \right) = \int \mu_1 * \cdots * \mu_n \left(\sum k_i \times E_i - x \right) d\mu_{n+1}(x).$$

We claim that

$$x_1 \neq x_2 \Rightarrow \mu_1 \ast \cdots \ast \mu_n \left(\sum_{i=1}^n k_i \times E_i - x_1 \cap \sum_{i=1}^n k_i \times E_i - x_2 \right) = 0.$$

Then as in the proof of the case n=1, we have $\mu_1 * \cdots * \mu_n(\sum k_i \times E_i - x) = 0$ except for perhaps countably many x, and we obtain, by (8),

(9)
$$\mu_1 * \cdots * \mu_{n+1} \left(\sum_{i=1}^n k_i \times E_i \right) = 0,$$

contradicting (4) and hence (3). We will thus obtain

(10)
$$\mu_1 * \cdots * \mu_{n+1} \left(\sum_{i=1}^n k_i \times E \right) = 0.$$

To prove the claim, suppose there is a fixed $y_0 \in (\sum k_i \times E_i - x_1) \cap (\sum k_i \times E_i - x_2)$. Then

(11.1)
$$x_1 + y_0 = k_1 e_1^0 + \dots + k_n e_n^0,$$

(11.2)
$$x_2 + y_0 = k_1 f_1^0 + \dots + k_n f_n^0,$$

 $e_i^0, f_i^0 \in E_i$ fixed. Given an arbitrary $y \in (\sum k_i \times E_i - x_1) \cap (\sum k_i \times E_i - x_2)$, we have

(11.3)
$$x_1 + y = k_1 e_1 + \dots + k_n e_n,$$

(11.4)
$$x_2 + y = k_1 f_1 + \dots + k_n f_n$$

 $e_i, f_i \in E_i$. For at least one value of *i*, say i=j, we must have $k_j e_j \neq k_j f_j$, since otherwise $x_1 = x_2$. Hence the equation denoted by (11.1) - (11.2) = (11.3) - (11.4) and the disjointness of the E_i 's with the independence of *E* yields

(12)
$$k_{j}e_{j}^{0} - k_{j}f_{j}^{0} - k_{j}e_{j} + k_{j}f_{j} = 0.$$

Since one of the first two terms of (12) must be nonzero, we must have (again by independence) that one of e_j or f_j must equal e_j^0 or f_j^0 , the latter two being fixed. Then by (11.3) and (11.4), either $y=k_je_j^0+\sum_{i\neq j}k_ie_i-x_1$, $y=k_jf_j^0+\sum_{i\neq j}k_ie_i-x_1, y=k_je_j^0+\sum_{i\neq j}k_if_i-x_2$, or $y=k_jf_j^0+\sum_{i\neq j}k_if_i-x_2$;

126

[May

hence we have

$$y \in \bigcup_{s=1,2} \left(k_j e_j^0 + \sum_{i \neq j} k_i \times E_i - x_s \right) \cup \bigcup_{s=1,2} \left(k_j f_j^0 + \sum_{i \neq j} k_i \times E_i - x_s \right).$$

Since y is arbitrary, $(\sum k_i \times E_i - x_1) \cap (\sum k_i \times E_i - x_2)$ is contained in a finite union (over $j=1, \dots, n$) of sets of the above form; however, by the inductive hypothesis,

$$\mu_{1} * \cdots * \mu_{n+1} \left(k_{j} e_{j}^{0} + \sum_{i \neq j} k_{i} \times E_{i} - x_{s} \right)$$

= $(\mu_{1} * \mu_{2}) * \cdots * \mu_{n+1} \left(\sum_{i \neq j} k_{i} \times E_{i} - (x_{s} - k_{j} e_{j}^{0}) \right) = 0,$

(there are *n*-convolutions and n-1-summands); s=1, 2, and similarly for f_{i}^{0} . Hence the claim, and (10), are proved. (We note it is not generally possible to have card $[\sum k_i \times E_i - x_1 \cap \sum k_i \times E_i - x_2] < \infty$; for example, choose E infinite and fix $x_1, x_2 \in E$; then $E \subseteq E + E - x_1 \cap E + E - x_2$.) Finally,

$$\mu_{1} * \cdots * \mu_{n+1} \left(\sum_{i=1}^{n} k_{i} \times E - x_{0} \right)$$

= $(\delta_{x_{0}} * \mu_{1}) * \cdots * \mu_{n+1} \left(\sum_{i=1}^{n} k_{i} \times E - x_{0} \right) = 0,$

and the Theorem is proved. Q.E.D.

Note that the requirement that μ_i is positive may be lifted by passing to the total variation measure.

If G is a compact nondiscrete group with Haar measure h, $E \subseteq G$ compact independent, and $Gp(E) = \bigcup_{n=1}^{\infty} n(E \cup -E)$, then our Theorem implies at once that h(GpE)=0. Indeed, h is a bounded, continuous, idempotent measure, and thus annihilates $\sum_{i=1}^{n} k_i \times E$ for all *n* and k_i . Our Corollary is a generalization of this, due to Graham [1] (who strengthened Rudin [3, 5.3.6]), giving a proof considerably simpler than Graham's.

3. **Proof of Corollary.** Given a closed set $S \subseteq G$, define $h|_{S}(A) = h(A \cap S \cap H)$ for all $A \subseteq G$, A Borel. In particular, we may write $h|_{H} = h$, and thus consider h as a (possibly unbounded) measure on G. We claim that if $S \subseteq H$ and $A \subseteq G$ are compact sets, then setting B = A - nS for any $n \in \mathbb{Z}^+$, we obtain

(13)
$$h|_B * h|_S * \cdots * h|_S(A) = h(S)^n h(A),$$

1974]

where there are *n*-convolutions of $h|_{S}$. Indeed,

$$\begin{aligned} h|_B * h|_S * \cdots * h|_S(A) \\ = \int h|_B (A - x_1 - \cdots - x_n) dh|_S(x_1) \cdots dh|_S(x_n). \end{aligned}$$

Since $A - x_1 - \cdots - x_n \subset A - nS = B$ for $x_i \in S$, $i = 1, \cdots, n$,

$$h|_{\mathcal{B}}(A - x_1 - \dots - x_n) = h(A - x_1 - \dots - x_n) = h(A)$$

because $x_i \in S \subseteq H$ implies $(A - x_1 - \cdots - x_n) \cap H = A \cap H - x_1 - \cdots - x_n$. Thus,

$$\int h|_{B}(A - x_{1} - \dots - x_{n}) dh|_{S}(x_{1}) \cdots dh|_{S}(x_{n})$$
$$= \int h(A) dh|_{S}(x_{1}) \cdots dh|_{S}(x_{n})$$
$$= h(S)^{n}h(A),$$

and the claim is proved.

Suppose now that E and k_1, \dots, k_n are given; we fix $W \subseteq H$ to be any relatively compact neighborhood in H, and set $A = k_1 \times E + \dots + k_n \times E - x_0$, $S = \overline{W}$, B = A - nS as above. Since $h|_B$ and $h|_S$ are then bounded continuous measures on G, our Theorem implies

$$h|_B * h|_S * \cdots * h|_S(A) = 0,$$

where there are *n*-convolutions of $h|_S$. However, (13) implies that $h(S)^n h(A) = 0$. Since $\overline{W} = S$, then $h(S) \neq 0$ and it follows that h(A) = 0. Thus $h[(GpE - x_0) \cap H] = 0$. Q.E.D.

I would like to express my gratitude to the referee for his helpful remarks and criticisms.

REFERENCES

1. C. Graham, Compact independent sets and Haar measure, Proc. Amer. Math. Soc. 36 (1972), 578-582.

2. S. Hartman and C. Ryll-Nardzewski, Quelques résultats et problèmes en algèbre des mesures continues, Colloq. Math. 22 (1971), 271–277. MR 44 #1993.

3. W. Rudin, *Fourier analysis on groups*, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.

4. D. L. Salinger and N. Th. Varopoulos, Convolutions of measures and sets of analyticity, Math. Scand. 25 (1969), 5-18. MR 41 #8930.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201

Current address: 6507 North Kedzie Avenue, Chicago, Illinois 60645

128