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CONVOLUTIONS  OF  CONTINUOUS  MEASURES
AND  SUMS  OF  AN  INDEPENDENT  SET

JAMES  MICHAEL  RAGO1

Abstract. Let £ be a compact independent subset of an l.c.a.

group G; ftx, ■ ■ ■ , ftn+i continuous regular bounded Borel measures

on G; and kx,- ■ ■ ,kn integers. Let kiXE={k¡x\xe E}. We prove

(1) Hi * ■ ■ ■ * ßn+1(k1xE+- ■ +knxE)=0 (the proof is a combin-

atorial argument).

As a corollary of (1) we obtain (2) if H is any closed nondiscrete

subgroup of G, then the intersection of H with the group generated

by E has zero //-Haar measure.

1. In [2, Theorem 2], Hartman and Ryll-Nardzewski showed neatly

that if px and p2 are continuous bounded measures on F, the circle group,

and Fc ris a compact independent subset of F, then px * p2(E)=0. In a

more complicated manner, Salinger and Varopoulos proved this result

for any metrizable group G in [4, Theorem 1]. We prove a generalization

of this theorem which holds for an arbitrary nondiscrete l.c.a. group G.

We denote by Z the set of all integers, Z+ = {k e Z\k>0}. A set £c(j is

independent if the equation kxex + - • -+knen=0, kteZ, eieE, yields

ktei = 0 for all /=1, • • ■ ,n or the e¿'s are not distinct. Note that an

independent set may contain 0.  We set kxE={ke\e e E}, and nE=

{ex-\-\-er\eteE} for keZ, neZ+; Ex + E2={ex + e2\exe Ex,e2e E2}.

M(G) is the set of bounded regular Borel measures on G.

Here is our main result.

Theorem. If G is a locally compact abelian group, E<-G a compact

independent subset, px, • • • , pn+x e M(G) positive continuous measures,

kt e Z, i= 1, • • ■ , n, and x0 e G, then

Pi * ■ ■ ■ * Pn+iiki x E + ■ ■ ■ + kn x E — x0) = 0.

At the end of the proof of the theorem, we will derive the following

corollary:

Corollary.    If G is an l.c.a. group, H^G is a closed nondiscrete" sub-

group with Haar measure h, x0 e G, and E^G is compact independent, then

h{(GpE-x0)r\H] = 0, where GpE= (J£=i «(FU-F).
-
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2. Proof of Theorem.    The proof is by induction. If «=1, we follow

the proof of [2, Theorem 2]. Suppose kx=l. By definition,

(1) px * p2(E) =    px(E -
Jo

x) dp2(x).

For xXt¿x2, suppose there is a fixed element y0 e E—x,n£—x2; then

ya=e0—xx=fo—x2, where e0,foe E are fixed. Hence,

(2.1) *i + yo = eo;

(2-2) x2+y0=fo.

If y g F—x,n£—x2 is arbitrary, then y=e—xx=f—x2 for certain

e,fe E, so

(2.3) Xl+y = e;

(2.4) *2+J=/.

The equation (symbolically written) (2.1)-(2.2)= (2.3)-(2.4) yields

c0—f0=e—f Since either e0 or /„ is nonzero (otherwise xx=x2), the

independence of £ requires one of the following four possibilities: e0=

e, e0=f,fo=e, or/0=/ By (2.3) and (2.4), these imply

y = e0 - xx, y =/0 - xx,y = e0 - x2, or y = fo - x2

respectively. Since e0, fo, xx, and x2 are fixed, this shows

card[F-x1nF-x2]<4

and 1«1(F—x,nF—x2) = 0, by continuity of px. (Since e0—xx=f0—x2=y0,

we actually have card^3.) The set ofx with px(E—x)>0 is then countable,

since it is easy to see that otherwise 11^11 = 00. Hence by (1) and the

continuity of p2, we have px * p2(E) = 0. If x0 e G, px * p2(E—x0) =

l(oXf¡ * px) * p2] = 0, where bx is the point mass at x0. Finally, in the case

kx jt= 1, kx x E is also compact independent, so the Theorem holds for n = 1.

We now suppose the Theorem holds for n— 1 and all kx, • • • , kn_x e Z;

we show it holds for n. Let px, ■ ■ ■ , pn+x, kx, ■ ■ ■ , kn and x0 be given.

Suppose

(3) px * ■ ■ ■ * pn+xikx X E + ■ ■ ■ + kn x E) = ó > 0.

Lemma. E may be written as the finite disjoint union of Borel sets F¿,

i=l, ■ • ■ , p, such that for some choice of integers ix, • • • , in, OSix<- ■ •<

i„Sp, we have

(4) px * ■ ■ ■ * pn+x(kx x Eh + • • • + kn x EA > 0.
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Proof of Lemma. We first set k=yx \kf\. By the inductive hypothesis

of the Theorem, for each choice of integers lx, • • ■ , /„_i, we have

px * ■ ■ ■ * ipn * pn+1)i 2 h x Fj = 0.

Containing each set 2""1 h xF there is, therefore, by the regularity of

px * • • ■ * p„+x, an open set Uh,...,lni with J /, X F<= Uh.I#_,, and

(5) Pi * ' ; • * /^„+i(l/¡1.,_) < b\A,

where A is the number of possible choices of/,, • • • , /„_, with 2í_1 IAI = £•

(For example, ASi2k + l)n-1.)

For each U, ..., , there is a relatively compact neighborhood K of 0

such that

(6) ^liXE + kVcz uiv...,lni,

by compactness. Taking (finite) intersections when necessary, we may

assume  (6)  holds with one   V for all  choices of (/,, ■ • • , ln_x) with

rrmsk.
Since Fis compact, it is covered by finitely many (say/») neighborhoods

(ei+V)i~)E, with e, e E, i=l, ■ • ■ ,p (p depending on V). Define £,=

(ex+V)nE,

Et = fo + V) n £\(£x u ■ • • U £,_!),        / = 2, • • • ,/»,

so the F,'s are disjoint Borel sets with union F. Each set of the form

(7) F = kx X Eh H-+ A'„ x £f>,       1 = /,,-•• , /„ < /?,

is Borel. We claim that at least one of the sets of form (7), with /,<• ■ •</„

all distinct, has strictly positive px * ■ ■ ■ * /¿„^-measure. This will prove

the lemma.

Indeed, consider any set of form (7) with at least two subscripts equal,

say ix = i2. It may then be written

F=kxx Eh + k2 x Eit + k3 x £¡3 + • • ■ + k„ x £,n

c fej x (eh + V) + k2 x (eu + V) + k3 x (e(> + V)

+ ■ ■ ■ + kn X (ein + V)

c (Ar, + k2) x E +■■■ +kN x E + kV

by (6). Hence the union of such sets (with two subscripts equal) is con-

tained in the union of the (A) sets U, ..., , and thus has px * ■ ■ ■ *

/u,1+1-measure less than ó, by (5). This completes the proof of the Lemma.
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For convenience we will assume, relabelling if necessary, that ix =

1, • • • , in=n. We write

Pi*--' *A*»+i(2fe< x Ei)

(8)
= \px *■ ■ -*pni 2 k, x Ei - x\ dpn+x(x).

We claim that
(n n \

2 ki x Ei - xx n 2 ki x Ei - x21 = 0.

Then as in the proof of the case «=1, we have px * ■ • • * pn(2. kiXEi—x) =

0 except for perhaps countably many x, and we obtain, by (8),

(9) Pi*--*Pn+i(ZkiX E¡}=0,

contradicting (4) and hence (3). We will thus obtain

(10) px*---*pn+x(2kiX e) =0.
\ i /

To prove the claim, suppose there is a fixed y0 e (2 /c¿x£¿—xx)C\

(2 kiXEi-x2). Then

(11.1) xx + y0 = kxe[> + ■ ■ ■ + kne°n,

(11.2) x2 + y9 - kxf\ + • •'• + kJl

e\,f\eEi fixed. Given an arbitrary y e (2 ^¿x£t—xx)n(2 rc¡x£¿—x2),

we have

(11.3) x, + y = kxex + • • • + knen,

(11.4) x2+y = kxfo + ---+knfn,

et, fo e Ei. For at least one value of i, say /=/', we must have k^j^kfo,

since otherwise xx = x2. Hence the equation denoted by (11.1) —(11.2) =

(11.3) —(11.4) and the disjointness of the £¿'s with the independence of

£ yields

(12) k/j - ft,/; - kfy + ktf, = o.

Since one of the first two terms of (12) must be nonzero, we must have

(again by independence) that one of e¡ or/ must equal e" or/", the latter

two being fixed. Then by (11.3) and (11.4), eithery=kje0¡ + '2i¥,jkiei—xx,

y=kjf°j + 2ilijkiei-xx,y=kje0j+'Zi¥jkifi-x2,OTy=kjß+2i^jkifi-x2;
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hence we have

y e U (kA + 2 ki x Ei -JuU (k¡.ñ + 2 ^ x E> - xs).
s=1.2\ i*i 1 s=1.2\ i* > I

Since y is arbitrary, (2 ki'X.Ei—x,)n(2 kiXE¡—x2) is contained in a

finite union (overy'=l, •••,«) of sets of the above form; however, by the

inductive hypothesis,

Pi*" ■ *Pn+i(kJe°i + 2 ki x Ei - x»)

= (px*p2)*---* pn+x( 2 k¡ X E¡ - (xs - M?)J = 0,

(there are «-convolutions and n— 1-summands); s=l, 2, and similarly for

/°. Hence the claim, and (10), are proved. (We note it is not generally

possible to have card[J /c¡x£¿ — x,n2 »V¿x£¿ — x2]<oo; for example,

choose E infinite and fix xx, x2 e £; then E^E+E—x,n£+£— x2.)

Finally,

(r \

2 ft;  X  F - X0 )

=   (^  • J«l) * «  •  « * r«*rt(¿  ME"   *o)    =   0,

and the Theorem is proved.    Q.E.D.

Note that the requirement that pt is positive may be lifted by passing to

the total variation measure.

If G is a compact nondiscrete group with Haar measure h, E^G com-

pact independent, and Gp(E)=\J^=xn(E\J — £), then our Theorem implies

at once that h(GpE) = 0. Indeed, /; is a bounded, continuous, idempotent

measure, and thus annihilates 22-i kt x E for all n and k¡. Our Corollary is

a generalization of this, due to Graham [1] (who strengthened Rudin

[3, 5.3.6]), giving a proof considerably simpler than Graham's.

3. Proof of Corollary. Given a closed set S<^G, define h\s(A) =

h(AC\Sr\H) for all A^G, A Borel. In particular, we may write h\H=h,

and thus consider /? as a (possibly unbounded) measure on G. We claim

that if 5cH and A^G are compact sets, then setting B=A—nS for any

n e Z+, we obtain

(13) h\B * h\s *■•■ * hUA) = h(Syh(A),
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where there are «-convolutions of h\s. Indeed,

n\n * h\s * • • • * h\s(A)

=   h\B(A - xx - ■ ■ ■ - xn) dh\s(xx) ■ ■ ■ dh\s(xn).

Since A— xx— ■ •— x„C<4 — nS—B for x¿ e S, i=l, • • ■ , n,

h\u(A - Xj.-x„) = h(A - xx-x„) = h(A)

because x{ e S^H implies (A— xx— ■ • — xn)C\H=A n/Y— x,— • • -—xn.

Thus,

h\,i(A - xx-xj áftjgíxj) • • ■ dftjgíx»)

= [/</!) rf/¡|s(x1)---c//)|s(x„)

= h(S)nh(A),

and the claim is proved.

Suppose now that £ and kx, ■ • • , kn are given; we fix W<^H to be any

relatively compact neighborhood in H, and set A=kxX E+- ■ - + knX

E—x0, S=W, B=A—nS as above. Since h\,¡ and h\s are then bounded

continuous measures on G, our Theorem implies

h\u * ̂ |s * • • • * /'IsM) = 0'

where there are «-convolutions of h\s. However, (13) implies that

hiS)"hiA) = 0. Since W=S, then /j(5)#0 and it follows that /i(/l) = 0. Thus

/;[(C/»F-.v0)n/7] = 0.    Q.E.D.
I would like to express my gratitude to the referee for his helpful

remarks and criticisms.
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