A COINCIDENCE THEOREM RELATED TO THE BORSUK-ULAM THEOREM

FRED COHEN AND J. E. CONNETT

ABSTRACT. A coincidence theorem generalizing the classical result of Borsuk on maps of S^n into R^n is proved, in which the antipodal map is replaced by a Z_p -action on a space which is (n-1)(p-1)-connected.

The main result is:

THEOREM 1. Let X be a Hausdorff space which supports a free Z_p -action, and $f: X \rightarrow \mathbb{R}^n$ a continuous map, $n \ge 2$. If X is (n-1)(p-1)-connected, then there exists $x \in X$ and $g \in Z_p$, $g \ne identity$, such that f(x) = f(gx).

We observe that if p=2, then Theorem 1 is a restatement of the classical Borsuk-Ulam theorem.

The case n=2 has been studied by the second author [3], using the fact that Artin's braid groups have no elements of finite order. For this case it suffices to assume only that $\pi_1(X)$ is a torsion group.

The cases n>2 require a bit more geometry. We recall the definition of the configuration space F(M,j), of j distinct points in a space M: F(M,j) is the subspace of M^j given by $\{\langle x_1, \dots, x_j \rangle | x_i \in M, x_i \neq x_j \text{ if } i \neq j\}$. The spaces F(M,j) have been studied by Fadell and Neuwirth [4]. Evidently Σ_j , the symmetric group on j letters, acts freely on F(M,j) by permutation of coordinates.

We define $F(R^{\infty}, j)$ to be inj $\lim_n F(R^n, j)$, where $F(R^n, j) \subset F(R^{n+1}, j)$ is given by the standard inclusion of R^n in R^{n+1} . By [2], $F(R^{\infty}, j)$ is contractible. Since Z_p , the cyclic group of order p, acts on $F(R^n, p)$ and $F(R^{\infty}, p)$ via the action given by a homomorphism $Z_p \to \Sigma_p$ which sends $1 \in Z_p$ to the cycle $(1, 2, \dots, p)$, it follows that $F(R^{\infty}, p)/Z_p$ is a $K(Z_p, 1)$ -space. We shall assume without loss of generality that p in the hypothesis of Theorem 1 is prime.

With these preliminaries, we state the main lemma; the lemma's proof is deferred till after the proof of Theorem 1.

LEMMA 2.
$$H^{i}(F(R^{n}, p)|Z_{n}; Z_{p})=0$$
 if $i>(n-1)(p-1)$.

Received by the editors August 8, 1973. AMS (MOS) subject classifications (1970). Primary 55C20, 55C35.

PROOF OF THEOREM 1. Let σ denote the generator of the cyclic group Z_p . We suppose that Theorem 1 is false, i.e., $f(x) \neq f(\sigma^i x)$ for all $x \in X$ and all i such that $1 \leq i \leq p-1$. Define $\psi: X \to F(R^n, p)$ by the formula $\psi(x) = \langle f(x), f(\sigma x), \cdots, f(\sigma^{p-1} x) \rangle$. Clearly ψ is a continuous, Z_p -equivariant map. Since X is Hausdorff, ψ induces a map of covering spaces:

$$X \xrightarrow{\psi} F(R^n, p) \xrightarrow{\lambda} F(R^{\infty}, p)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X/Z_p \xrightarrow{\hat{\psi}} F(R^n, p)/Z_p \xrightarrow{\hat{\lambda}} F(R^{\infty}, p)/Z_p$$

(vertical arrows represent quotient maps; λ and $\hat{\lambda}$ are the obvious inclusions). By naturality of the spectral sequence for a covering [1, pp. 355-358] and the fact that X is (n-1)(p-1)-connected, it follows immediately that $\hat{\psi}^* \circ \hat{\lambda}^*$: $H^*(K(Z_p, 1); Z_p) \to H^*(X/Z_p; Z_p)$ is an isomorphism in degrees $\leq (n-1)(p-1)$ and a monomorphism in degree (n-1)(p-1)+1.

It is well known that

$$H^*(K(Z_p, 1); Z_p) = P[u] \text{ if } p = 2,$$

= $E[u] \otimes P[\beta u] \text{ if } p > 2,$

as an algebra, where P[u] denotes the polynomial algebra on a one-dimensional class u, E[u] denotes the exterior algebra on a one-dimensional class u, and $P[\beta u]$ denotes the polynomial algebra on the Bockstein of u [1, p. 252]. (We will consider the cases p>2 since the case p=2 is analogous and easier.) Hence $\hat{\psi}^* \circ \hat{\lambda}^*(u^{\epsilon}(\beta u)^k) \in H^*(X/Z_p; Z_p)$ is nonzero provided $\epsilon=0$, 1 and $\epsilon+2k \leq (n-1)(p-1)+1$. But by Lemma 2, $\hat{\lambda}^*(u^{\epsilon}(\beta u)^k)=0$ if $\epsilon+2k = (n-1)(p-1)+1$, which is a contradiction to our hypothesis that $f(x) \neq f(\sigma^i x)$ for $x \in X$, $1 \leq i \leq p-1$. This proves Theorem 1.

We remark that this proof of Theorem 1 is actually a generalization of the proof of the Borsuk-Ulam theorem which relies on the truncated polynomial algebra $H^*(P^n; \mathbb{Z}_2)$.

PROOF OF LEMMA 2. Let $\{E_r\}$ denote the spectral sequence for the covering whose E_2^{**} term is $H^*(Z_p; H^*(F(R^n, p); Z_p))$ and which converges to $H^*(F(R^n, p)|Z_p; Z_p)$. By Theorem IV of [2] (the 'vanishing theorem'), $E_2^{s,t}=0$ if s>0 and $t\neq 0$, (n-1)(p-1) or t>(n-1)(p-1). By the periodicity argument in [2], it is easy to see that no classes of total degree greater than (n-1)(p-1) can survive to E_∞^{**} . This proves Lemma 2.

REMARKS. Another generalization of the Borsuk-Ulam Theorem has been proved by Munkholm [5], whose result implies that if $f: S^k \to R^n$ is continuous and $\sigma: S^k \to S^k$ generates a Z_p -action on S^k and $k \ge n(p-1)$,

then there exists $x \in S^k$ such that $f(x) = f(\sigma^i x)$ for all i, $1 \le i \le p-1$. Thus Munkholm's result requires a stronger hypothesis than our theorem, but also yields a stronger conclusion.

For $p \ge 3$ and $n \ge 1$, one easily finds continuous maps $f: S^{2n-1} \to R^{n+1}$ for which $f(x) \ne f(\sigma^i x)$ for any i, $1 \le i \le p-1$, and any $x \in S^{2n-1}$. This shows that Theorem 1 is best possible for p=3, in the sense that the hypothesis that X is (n-1)(p-1)-connected cannot be weakened.

REFERENCES

- 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040.
- 2. F. Cohen, Cohomology of braid spaces, Bull. Amer. Math. Soc. 79 (1973), 763-766.
- 3. J. E. Connett, A generalization of the Borsuk-Ulam theorem, J. London Math. Soc. (2) 7 (1973), 64-66.
- 4. E. Fadell and L. Neuwirth, *Configuration spaces*, Math. Scand. **10** (1962), 111-118. MR **25** #4537.
- 5. H. J. Munkholm, Borsuk-Ulam type theorems for proper Z_p -actions on (mod p homology) n-spheres, Math. Scand. 24 (1969), 167-185. MR 41 #2672.

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115