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A  COINCIDENCE  THEOREM  RELATED
TO THE  BORSUK-ULAM  THEOREM

FRED  COHEN  AND  J.   E.  CONNETT

Abstract. A coincidence theorem generalizing the classical

result of Borsuk on maps of S" into Rn is proved, in which the anti-

podal map is replaced by a Z„-action on a space which is

(n — l)(p — l)-connected.

The main result is:

Theorem 1. Let X be a Hausdorff space which supports a free ZP-action,

andf.X^-R7' a continuous map, n^.2. If X is (n — l)(p—l)-connected, then

there exists x e X and g e Zv, g^identity, such that f(x)=f(gx).

We observe that if/» = 2, then Theorem 1 is a restatement of the classical

Borsuk-Ulam theorem.

The case «=2 has been studied by the second author [3], using the fact

that Artin's braid groups have no elements of finite order. For this case it

suffices to assume only that ttx(X) is a torsion group.

The cases «>2 require a bit more geometry. We recall the definition

of the configuration space F(M,j), of j distinct points in a space M:

F(M,j) is the subspace of M> given by {(xx, ■ ■ ■ , Xj)\xt e M, x^x,- if

zV/'}- The spaces F(M,j) have been studied by Fadell and Neuwirth [4].

Evidently .Sy, the symmetric group on y letters, acts freely on F(M,j) by

permutation of coordinates.

We define F(RCD,j) to be inj limn F(Rn,j), where F(Rn,j)<=F(Rn+1,j)

is given by the standard inclusion of Rn in RB+1. By [2], F(R°°,y) is

contractible. Since Z„, the cyclic group of order/», acts on F(Rn,p) and

F(Rca,p) via the action given by a homomorphism ZP-+LP which sends

1 e Zp to the cycle (1, 2, ■••,/»), it follows that F(iv°°,p)\Zp is a A:(Z„, 1)-

space. We shall assume without loss of generality that p in the hypothesis

of Theorem 1 is prime.

With these preliminaries, we state the main lemma; the lemma's proof

is deferred till after the proof of Theorem 1.

Lemma 2.    H\F(Rn,p)\Zp;Zv)=0 ///>(//-!)(/»-!).
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Proof of Theorem 1. Let cr denote the generator of the cyclic group

Z„. We suppose that Theorem 1 is false, i.e.,f(x)¿¿f(a¡x) for all x e A^and

all /' such that lSiSp—\. Define y:X-^>-F(Rn,p) by the formula y(x)=

(f(x),f(ax), ■ ■ ■ ,f(av~1x)). Clearly y is a continuous, Zp-equivariant

map. Since Ä'is Hausdorff, y induces a map of covering spaces:

X——► F(Rn,p) —-—► F(Rx,p)

Y „ Y Y

X\ZV JU. F(R»,p)IZp -i+ FiR*>,p)IZB

(vertical arrows represent quotient maps; X and / are the obvious in-

clusions). By naturality of the spectral sequence for a covering [1, pp.

355-358] and the fact that X is (n— l)(p— l)-connected, it follows im-

mediately that y*o)*: H*(K(Z¡l,l);ZB)^H*(X¡Z1);Zr) is an iso-

morphism in degrees S(n— \)(p— 1) and a monomorphism in degree

(n-l)(p-l)+\.

It is well known that

H*(K(Zv,l);ZB) = P[u]    if//= 2,

= E[u] eg) P[ßu]    if// > 2,

as an algebra, where P[u] denotes the polynomial algebra on a one-

dimensional class u, E[u] denotes the exterior algebra on a one-dimensional

class u, and P[ßu] denotes the polynomial algebra on the Bockstein of u

[1, p. 252]. (We will consider the cases/»>2 since the case/? = 2 is analogous

and easier.) Hence y* ° X*(uE(ßu)k) e H*(XjZI>;ZB) is nonzero provided

e = 0, 1 and e+2kS(n-l)(p-l)+l. But by Lemma 2, X*iu'(ßu)k)=0 if

e + 2k = in—l)ip—l)+l, which is a contradiction to our hypothesis that

fix)7£fia'x) foTxeX, ISiSp—l. This proves Theorem 1.

We remark that this proof of Theorem 1 is actually a generalization of

the proof of the Borsuk-Ulam theorem which relies on the truncated

polynomial algebra H*(Pn; Z2).

Proof of Lemma 2. Let {Er} denote the spectral sequence -for the

covering whose E2* term is H*(ZV; H*(F(Rn, p);Zv)) and which con-

verges to H*(F(Rn,p)IZ1,;Zn). By Theorem IV of [2] (the 'vanishing

theorem'), ES2J=0 if s>0 and r^O, (n-l)(p-l) or />(//- \)(p- 1). By

the periodicity argument in [2], it is easy to see that no classes of total

degree greater than (n—l)(p—l) can survive to F**. This proves Lemma

2.
Remarks. Another generalization of the Borsuk-Ulam Theorem has

been proved by Munkholm [5], whose result implies that if/:Sk^-Rn is

continuous and cr : Sk—>Sk generates a ZJ(-action on Sk and k^n(p—\),
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then there exists x e Sk such that/(x)=/(cr¿A) for all i, 1 SiSp—l. Thus

Munkholm's result requires a stronger hypothesis than our theorem, but

also yields a stronger conclusion.

For /»^3 and /z^l, one easily finds continuous maps f:S2n"1^>-Rn+1

for which f(x)^f(alx) for any /', ISiSp—l, and any x e S2"-1. This

shows that Theorem 1 is best possible for />=3, in the sense that the

hypothesis that A' is (n— l)(p— l)-connected cannot be weakened.
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