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Z,-EQUIVARIANT IMMERSIONS AND EMBEDDINGS
UP TO COBORDISM

MICHAEL C. BIX
ABSTRACT. The manifolds in an additive basis for the cobordism
ring of manifolds with involution are Z,-equivariantly immersed

and embedded into representation spaces having the smallest
possible number of nontrivial factors up to cobordism.

Let o be the Z,-action on RP™ which is given in homogeneous coordi-

nates by o[xo, X1, -, X,]=[—xo, x1, -+, x,]. Define Pinfz_’ﬂfil
by
1
T[M, T] = [ MXS z]H[m,z]],
(m,z) ~(Tm, —z)

where 7%: is the bordism group of unrestricted involutions. I' can be
defined in the same way for manifolds which are not compact. {l}U
{TU(RP™,0) X (RP"2,0) X - * X (RP"™, ) X (M™, 1)[i =0, k=1, n,Zn, =" - - =
n.>1, [M],70}, where by I'® we mean the identity, and by [M], we mean the
class of the closed C* manifold M in the unoriented cobordism ring (Thom
[8]), is an additive set of generators for nZ: (Alexander [1], Stong [7]). Let
(—1)®1® denote R™s furnished with the Zj,-action (xi,-: -, X.qp)—
(=X, * "y —Xp, Xp15° > Xpye)- For each element (N, S) in the additive
basis for 7%, we wish to find an integer r, (resp. ry) such that there is a
manifold with involution in the bordism class of (N, S) which can be Z,-
equivariantly embedded (immersed) in a representation space

(=hvels  (=D¥ol)

for some s and such that no manifold with involution in the bordism class
of (N, S) can be Z,-equivariantly embedded (immersed) in a representation
space

(—pett (—hTtel)

for any ¢. This is a generalization to the case of Z,-manifolds of the work
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by Brown [2], [3], and Liulevicius [6] on immersions and embeddings
up to cobordism.

PropOSITION 1. T%(RP™, ¢) X (RP™, 0) X - - X (RP"™, ¢) X (M™, 1) can
be Zy-equivariantly embedded in (—1)*+™+met " +mg 13, for some s.

LemMa 2. If e:(M, T)—(N, S) is a Zj-equivariant embedding, then
so is Tie:T'(M, T)—>T(N,S), where T'e is defined inductively by
Te[m, z]=[e(m), z].

LEMMA 3.y, :Ti((=1)y@1)—>(=1)tiglstirtiiil/2 js g Z,-equi-
variant embedding, where vy, ; ; is defined inductively on i by

’ ’
yhs.l[xla'“,xr’xl"“axs’y’z]
= 2 Pyl v x! Y2 2
f(xlz’x2z’ s XpZ, YZ,%1y,XsY, s XpYs X5 Xoy s X Y —Z),

where (y, z) are the coordinates of a point in S*.

PROOF OF PROPOSITION 1. Z,-equivariant embeddings of (RP*, ¢)
into representation spaces can be constructed from techniques of Hopf
[5]. A system of n equations, each of which is a real symmetric bilinear
form in the variables x,, - - -, x, and y,, - * - , y,, whose only real solutions
are of the type x,=---=x,=0 or y,=---=y,=0, determines an em-
bedding of RP™!in S™1. The following {n(n+1)+n+1 equations:

fl(xh Uy X1 V1 s Vngl) = X1)2 + Xey1 = 0,
SR, X1 V1 s V) = X1Ys + X3y = 0,

SO X1 Y15 s Yur) = X1Ynr F Xpn )1 =0,

f"+l(x1, Cr oty X1 V1 T ayn+1) = X2)3 + X3Ys = 0,

fn(n+l)/2(x1, s Xpt V1 T ’yn-(-l) = XpYn+1 + Xn+1Yn = 0,

f"(n+l)/2+l(x1, s Xpgs V1 $yn+l) =X1)1 = 0’

fn(n+l)/2+n+l(xla T, xn+l’ }’1, et ’yn+1) = xn+1yn+l = 0’
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define an embedding e, : RP"—S™("+1)/2+" for 22, which is given in homo-
geneous coordinates by

en[xo’ X1ttt X"]
2 2
_ (2x0x, 2X9Xq N 2XgX, 2X.X, . 2X, 1 X0 Xg ﬁz)
b

) > > ’ > > > > b

c 9 4 c 4 C C

where ¢ is the length of the vector (2xyx;, 2xpx, * * -, 2Xx9X,, 2X1X, * * *
2Xn_1Xns Xoy ** + 5 X2) in R™»+D/2+n+1 When we consider Z,-actions on
these spaces, the embedding e, :(RP", 0)—S((—1)"@1*"+D/241) s 2
Z,-equivariant map, where S denotes the associated sphere bundle.

Pn=(0,0,...’091’0,‘.‘90)

(n(n+1)/2 -1 times) (n+1 times)
does not lie in the image of e,. Let s,:S"—R" denote the stereographic
projection map from the point P,. Then
e;z = Sn(n+1)/2+nen:(RPn’ G) g (_l)n S 1n(n+1)/2
is a Z,-equivariant embedding. Lemmas 2 and 3 then give a Z,-equivariant
embedding
e. :Fi(RPn O') e (_l)n-l-i o (D /2+intitit1) /2
Let e;;: M—12™ be an embedding. Then we have a Z,-equivariant
embedding
€;n, X €, X "X €, X ey
TY(RP™, 6) X (RP™,0) X -+ X (RP™,0) x (M™, 1)
_>((__1)i~!-nl D 1nl(nl+l)/2+in1+i(i+l)/2) X ((_l)n2 ® 1"2(”2+1)/2) X -
X ((_l)nk o ln,‘(n,c-i-l)/2) % 12m,

as required in Proposition 1.

PROPOSITION 4. Let i:(M, T)—(N, S) be a Z,-equivariant immersion.
If F(M, T), the fixed point set of M under the action of T, has a nonempty
component of codimension k in M, then F(N, S) has a nonempty component
of codimension Zk in N.

PROOF. Choose a point p in a component F, of F(M, T) which has
codimension k in M. Let F;,, be the component of F(N, S) which con-
tains i(p). Let S(v%) [resp. S(v)] be the sphere bundle associated to
the normal bundle to F, [F;,] in (M, T) [in (N, S)]. The Z,-action
which S(+%;) inherits from (M, T) is the antipodal action on each fibre.
Let S [S!;)] be the restriction of the total space of S(f) [S(¥x)]
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to those points which lie above p [i(p)] in the fibre bundle. Since
i|se=1:8, 7' —>Si) is an immersion, k—1=/—1. So IZk.

i Z
PROPOSITION 5. If [Mg"™+ " *™+™ T)e qi’2, ... in m Such that

[M,, T] = [[(RP™, 0) X (RP™, 0) X -+ - X (RP™, ¢) X (M™, 1)]
Z2
€ 7]i¢nl+' C kg tmo

and such that there is a Z,-equivariant immersion f:(M,, T)—(—1)"®l¢,
then rZi+n,+ny+- - -+n, and sZmin(ny, ny, -+, n)—1+m.

ProorF. We use the symbol U to denote the disjoint union.
F(RP", g)= %+ URP"~1and F(I'(N, $))=NUF(N, S). Hence

F(I'(RP™, ¢)) = * U RP"™1 U RP™1 U I''(RP™, 0)
V- U I'(RP™M, 6).

F(I'(RP™, g) X (RP™,0) X +*+ X (RP™, o) X (M™, 1))
= F(T'(RP™, ¢)) x F(RP™, 6) X - -+ x F(RP™, ¢) x F(M™, 1)
= M U (components of dimension = min(ny, ny, - -+, n,) — 1 + m).

But the unoriented cobordism class of the fixed point set is an invariant
of the cobordism class of a manifold with involution. Thus F(M,, T)=
(components of dimension m, at least one of which is nonempty) U(com-
ponents of dimension Zmin(n,, ny, - * -, n)—1+m), since [M],7#0. There-
fore r=i+n,+n,+- - - +n, by Proposition 4, and F(M,, T) must contain at
least one nonempty component of dimension Zmin(ny, ny, * * +, n)—14m,
because [M],#0 (Conner and Floyd [4]). Since f is an immersion,
s=Zmin(ny, nyy * *+ , Hp)—1+m.

Combining Propositions 1 and 5 we have the following result for mani-
folds which form an additive basis for #Z::

THEOREM 6. I'(RP™, )X (RP™, ¢)X " - - X (RP™, 6)x (M™, 1) can be
Z,-equivariantly embedded in (—1)*+™+"+ "+ @13 for some s, and cannot
be Zy-equivariantly immersed up to cobordism in (—1)7"itnet " +u—lgp]t
for any t, where iZ0, k=1, n,Zn,2- - -Zm>1, [M™],5#0 in n,,.

I would like to thank Arunas Liulevicius for his invaluable advice and
unwavering optimism.
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