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PARALLEL  VECTOR   FIELDS  AND  PERIODIC  ORBITS

SOL  SCHWARTZMAN

Abstract. Let V be a parallel vector field on a compact

Riemannian manifold without boundary. Suppose the Euler

class over the reals of the normal bundle to V is different from

zero. Then the flow defined by V has a periodic orbit.

Let M" be a C°° compact oriented //-dimensional Riemannian manifold,

and let F be a nowhere vanishing Cm contravariant vector field on Mn

that is parallel with respect to the metric; that is, we assume that the co-

variant derivative of V is zero. Let p e Hn~1(M", R) be the Euler class

of the normal bundle to V with real coefficients, where we put the obvious

orientation on the normal bundle. The purpose of the note is to prove the

following result:

Theorem.    If p¿¿0, the flow defined by V has a periodic orbit.

Proof. We proceed by adopting a device used in [2]. The one-form a

gotten from V by lowering indices has covariant derivative zero and there-

fore has exterior derivative zero, since the exterior derivative is the skew-

symmetrization of the covariant derivative. Moreover the interior product

of a and V is certainly never zero. Let a.x, • ■ ■ , ak be closed one-forms on

Mn corresponding to a basis for the one-dimensional cohomology on

M". For some <3>0, |e,| + - ■ - + \£k\<à implies that c/.-\-sxa.x + - ■ - + eky.k has

a nowhere vanishing interior product with V. We see from this that we

can get C° one-forms a>x, • • • , tok each of which has a nonvanishing

interior product with V and which determine cohomology classes which

arise from a basis for the rational one-dimensional cohomology of M".

Then by multiplying w,, • • • , cok by suitable rational constants we can

get one-forms w'x, ■ ■ ■ , w'k each of which has a nowhere vanishing interior

product with V and which correspond to a basis of H'(M", R) arising

from the integral one-dimensional cohomology of M". Each of the one-

forms a>[, • ■ ■ , oj'k arises from a map to the circle; in an easily understood

notation there exist functions 0X, • • • ,6k on Mn defined mod 1 such that

oj[ = ddx, ■ ■ ■ , cok=ddk.

Next we observe that if Nx, • • ■ , Nk are the (n— l)-dimensional mani-

folds corresponding to the equations 6X = 0, ■ ■ ■ , dk=0 and taken with
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the obvious orientation the fundamental class of N¡ yields by injection

the element of Hn_xiMn, R) which corresponds by Poincaré duality to

the cohomology class determined by a>'t. This can be seen, for example,

by noticing that for any closed (/?— l)-form X, Jj^ AAt/ö,=jV X, which

follows by using the local product structure on M" as a bundle over the

circle and noting that the integral of / is the same over each fibre for any

one of our fibrations d¿.

Since the Euler class p of the normal bundle to the vector field V is

assumed different from zero, there is an /'„ such that the cap product of p

with the injection of the fundamental class of A', into the homology of

M" is different from zero. Then the pullback of p to the cohomology of

Ni is different from zero. This pullback is, however, just the Euler class

of the oriented tangent bundle to A', ; thus the Euler characteristic of

A',  is different from zero.

However at is clearly a global cross-section to the flow determined by

the vector field V. If /; is the homeomorphism of A/, onto itself deter-

mined by the flow we can conclude by a theorem of Fuller, since the Euler

characteristic of A',  is different from zero, that there exists a point on N¡
'o r 'o

periodic under //. Then the orbit of this point under the flow defined by

V must be periodic.

(Note. After this paper was submitted, two related papers came to the

author's attention. In [2] Conley introduced the notion of a flow which

carries a one-form. A flow defined by a parallel vector field on a Rieman-

nian manifold carries a closed one-form. Moreover if the Euler class over

the reals of the normal bundle to a vector field Kon a compact orientable

manifold is different from zero, and if the flow defined by V carries a

closed one-form, our argument can be carried over to prove that there

is a periodic orbit. In [1], which appeared after the present paper was

accepted for publication, Churchill shows that a flow which carries a

closed one-form has a cross-section.)
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