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SOME IMPLICATIONS  OF THE EULER-POINCARÉ
CHARACTERISTIC FOR  COMPLETE

INTERSECTION  MANIFOLDS

BANG-YEN   CHEN1  AND   KOICHI  OGIUE2

Abstract. Studies on relations between Euler-Poincaré

characteristic and codimension of a complete intersection manifold

in a complex projective space.

1. Introduction. Let Pn+v(C) be an («+/»)-dimensional complex

projective space. An «-dimensional algebraic manifold M imbedded in

Pn+v(C) is called a complete intersection manifold if M is given as an

intersection of p nonsingular hypersurfaces Mx, • • • , Mp in general

position in

Pn+P(C):M = Mx n--- r\M„.

It is known that the Chern classes of a complete intersection manifold

Mare completely determined by the degrees ofMx, • ■ ■ , Mv. In particular,

the Euler-Poincaré characteristic of a complete intersection manifold is

completely determined by the degrees of Mx,'• * • , Mv.

In §2 we prove a formula for the Euler-Poincaré characteristic of a

complete intersection manifold in terms of the degrees.

It is sometimes very important to know the smallest codimension for a

complete intersection manifold: the smallest/» for which M can be im-

bedded as a complete intersection manifold in Pn+p(C). In §3 we prove

several results in this direction.

2. The Euler-Poincaré characteristic of complete intersection manifolds.

Let Pn+J)(C) be an («+/»)-dimensional complex projective space and let

M be an «-dimensional complete intersection manifold imbedded in

Pn+J)(C):M=Mxn- ■ -r\Mv, where the Mxs are nonsingular hyper-

surfaces in Pn+v(C). The following theorem gives a concrete formula for

the Euler-Poincaré characteristic of a complete intersection manifold.
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Theorem 2.I.3 Let M=MXC\- • -C\MV be an n-dimensional complete

intersection manifold imbedded in Pn+PiC). If deg Mx=ax, then the Euler-

Poincaré characteristic %iM) of M is given by

%{M) = i(-,iW"+'t-wi(n4
*_o V    n-k   /   J\x=x    I

where ak=J^Xii aa a. ax  {the sum of all homogeneous monomials

of degree k in ax, a2, • ■ • , av) and ( „i£ ) is the binomial coefficient.

Proof. Let h be the generator of //2(P„+Î)(C), Z) corresponding to the

divisor class of a hyperplane Pn+v_xiC). Then the total Chern class

c(Pn+P(C)) ofPn+v(C) is given by

c(Pn+P(C)) = (l+ T>)n+V+1

Let j:M—>-Pn+II(C) be the imbedding and v be the normal bundle of

jiM) in Pn+v(C). Then the total Chern class c(v) of v is given by

civ) = (1 + axh) * * * (1 + aji),

where h is the image of h under the homomorphism y'*://2(/'r!+J,(C),Z)—►

H\M,Z). Since j*T(Pn+p(C)) = T(M)®v (Whitney sum), we have

j*ciPn+viC)) = ciM) ■ civ),

where c(Af) is the total Chern class of M. Let ct(M) be the ;'th Chern class

of M. Then we have

(1 + hf+v+i = r, + Ci(M) + •. • + cn(M)] ■ (I + axh) ■■■(1+ aph)

which implies that

C„(M) =-
k=0 \    n - k    I    .

hn.

Taking the values of both sides on the fundamental cycle of M, we have

X(M) =
.S \    n-k    /    J\x=1     I

Remark.    Let b¡iM) be the ;'th Betti number of M. It is known that if

M is an «-dimensional complete intersection manifold, then

MAO = 1        (2fe * n),

b2k+1iM) = 0       ilk + 1 * n).

3 Although Theorem 2.1 can be obtained from Theorem 22.1.1 of [1], we give here

a direct proof for the sake of completeness.
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Therefore x(M)=^}rL0(-l)ibi(M)'^n+l  (resp.   r^n-H) provided that

n is even (resp. odd).

3. Some implications of the Euler-Poincaré characteristic. First we

prove the following:

Theorem 3.1. Let M be an n-dimensional complete intersection mani-

fold. If x(M) = vx • • • vpfor some prime numbers vx, • • • ,vv (^ ± 1), then

M can be imbedded as a complete intersection manifold in /\¡+í,(C).

Proof. We can assume without loss of generality that M is a complete

intersection manifold imbedded in Pn+q(C) for some q^p. In fact, if

M is a complete intersection manifold imbedded in Pn+T(C) for some

/*</», then, by imbeddingPn+r(C) into Pn+g(C) as a linear subspace for some

q^p, M can be considered as a complete intersection manifold imbedded

in Pn+Q(C).

Theorem 2.1 implies that #(M) is given as a product of q+l integers:

X(M)=[- ■ -]ax ■ ■ ■ aq. On the other hand, since %(M) = vx ■ • • vp, at

least q—p ax's must be equal to 1. This implies that M can be imbedded

as a complete intersection manifold in some («+/»)-dimensional linear

subspace Pn+P(C) in P„+3(C).    Q.E.D.

It is sometimes very important to know the smallest codimension for

which M can be imbedded as a complete intersection manifold. From this

point of view, Theorem 3.1 may not be the best possible in general. We

shall prove several partial improvements of Theorem 3.1 in the following:

First we prove the following:

Lemma 3.2. Let M be an n-dimensional complete intersection manifold

imbedded in Pn+PiC). Assume that x(M) = vx ■ • ■ vp for some prime num-

bers vu ■ ■ ■ , vp (#±1). If the Diophantine equation ¿Lo (-OTÍ-íV*^

±1 has no solution satisfying af^fl, • • • ,ap^.l, then M can be imbedded

as a complete intersection manifold in Pn+p-X(C).

Proof. Theorem 2.1 implies that %(M) is given as a product ofp+l

integers: %(A/)=[* • -}ax ■ • ■ ap. On the other hand, since x(M) =

vx ■ ■ ■ vP, at least one among [• • •], ax, ■ ■ ■ , aP must be equal to ±1.

If the Diophantine equation [•■•]=±1 has no solution satisfying

ax>l, • • • , av>\, then at least one ax must be equal to 1.    Q.E.D.

Theorem 3.3. Let M be a complete intersection manifold. If %iM)

is a prime number, then M is one of the following:

(1) a linear subspace

(2) a quadric in P2(C),

(3) a curve of degree 4 in P2(C).
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Proof. In consideration of Theorem 3.1, we may assume that M is

a nonsingular hypersurface of Pn+xiC). Putting a=ax, from Theorem

2.1 we have

X(M) =
.k=„ \n - kl   .

(1 _ a)*+2 _ i + (n + 2)g
a =-• a.

Since %(M) is a prime number, either a=l or

(1 - a)n+2 - 1 + (n + 2)a
±1.

If a = 1, then Misa linear subspace. Therefore we consider the latter case.

It suffices to prove the following:

Lemma. The only positive integral solutions for the Diophantine equation

(l-tf)"+2-l+(«+2)ö=±a2 are (n, a)=(l,2) and («, a)=(l, 4).

Proof of lemma. Since a=l cannot be a solution for the equation

(1 —a)n+2—l+in+2)a=±a2, we consider this equation for a^.1. Let

t, -,      (1 - a)n+2 -l+jn + 2)a
fn(a) =-2-    for a ^ 2.

a

(i) If« is even : It is easy to show that/n(a) is monotonically increasing

and/n(2)=(«+2)/2>l. Therefore the equation (l-iz)B+2-l+(«-|-2)a=

+_a2 has no solution of the form («, a) = (even, *).

(ii) If« is odd: fn(a) is monotonically decreasing and/ri(2) = («+l)/2.

It is also easy to show that/„(5)*g — 2. Therefore the only candidates for

the solutions for the equation (l—a)n+2—l + (n+2)a=+a2 are of the

form («, a) = (*, 2), (n, a) = (*, 3) or («, a)=(*, 4). We can easily prove

that the only solutions are («, a) = (l, 1) and («, fl)=(l, 4).    Q.E.D.

Corollary 3.4. Let M be a complete intersection manifold. If

dim M> 1 and if x(M) is a prime number, then M is a linear subspace.

Theorem 3.5. Let M be a complete intersection manifold. If dim M> 1

and if x(M)=vivifor some prime numbers vx,v2 (?¿ + I), then M can be

imbedded as a hypersurface.

Proof. In consideration of Theorem 3.1, we may assume that M is

imbedded as a complete intersection in Pn+2iC), where «=dimM.

From Theorem 2.1, we have

yXM)=\2i-l)f + 3)ak~
LS> \n - kl    J

a,a.
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We consider the Diophantine equation

(3.1) Zi-x)f + l)ak=±l.
¿To \« - ki

Multiplying both sides of (3.1) by ax—a2, we obtain

Î (-!)*(" + %l+1 - tí») = ±(«i - ct2),
¿T0 \n - k!

which can be written as

1(M n+3 W
t, \n + l-k)  \

LS) \n+ I - ki   .
= ±(ax - a2).

Hence we have

(1 - ai)B+8 -!+(« + 3)fll

a?

+
(1 - a2)n+3 -l+(n + 3)a2

or

(1 - ax)n+3 - I + (n + 3)ax

= ±(a, - a2)

(3.2)

Let

a\

(1 - a2)"+3 -!+(« + 3)a,

m

ft ^     (1 - a)n+3 - 1 +(« + 3)fl   ,
fn(a) =-a-± a.

a2

Then it is not difficult to prove that

f'„(a) > 0   for a ^ 3    if « is odd,

f'nia) < 0   for a ^ 2   if w is even.

± a2.

(3.3)

This implies that foia) is monotonically increasing (resp. decreasing)

for a^3 (resp. a^.1) if « is odd (resp. even). Therefore from (3.2) we

deduce that either ax=a2 or/„(2) =/„(*), the latter case arising only when

n is odd. It is easy to show that the only solution for the latter case is

fx(l)=fx(3). But this is excluded by the assumption that «>1. Hence we

have ax=a2.
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Putting a=ax=a2, from (3.1) we have

(3.4) 2(-imTi)(" + V = ±i.
k=0 \n - kl

Let

gn(a) = 2(-lf(k+l)(n + \'c+ 1.
k=o \n - k!

Then we ha\ef'n(a)=—gn(a), which, together with (3.3), implies that

gnia) < 0   for a ^ 3    if « is odd,

gn(a) > 0   for a ^ 2    if « is even.

Therefore the only candidate for the solution for (3.4) is («, a) = (odd, 2).

But, since gn(2)=—f'n(2)= + l if « is odd, (3.4) has no solution of this

form.

Thus we have proved that the Diophantine equation (3.1) has no

solution satisfying «>1, axzî2 and a2^2. This, combined with Lemma

3.2, implies that M can be imbedded as a hypersurface.    Q.E.D.

We have excluded the 1-dimensional case in Theorem 3.4. The following

result gives a solution for this case.

Theorem 3.6. Let M be a complex curve which is a complete inter-

section manifold. If i(M)=vx • • • vv for some prime numbers vx, • • • , vp

(t^ + 1), then M can be imbedded as a complete intersection manifold in

PP(C) except when

P3(C) => M = M, n M2   (deg M, = 2, deg M2 = 3),

P4(C) = M = Mx n M2 n M3   (deg Mx = 2).

Proof. In consideration of Theorem 3.1, we may assume that M

is imbedded as a complete intersection manifold in PX+P(C). From

Theorem 2.1 we have

Z(M)= [p + 2-2ax]ax---av

so that %(M) is a product of p+l integers. Therefore at least one of them

must be equal to ±1. It is easy to prove that the equation/»+2—2 ox =

±1 has solutions satisfying af^.2, ■ ■ ■ , ap^.2 only when p=2 or /» = 3,

and the solutions are, respectively, {ax, a2} = {2, 3} or {ax, a2, a3} =

{2,2,2}.    Q.E.D.
For complex surfaces we have the following:

Theorem 3.7. Let M be a complex surface which is a complete inter-

section manifold. If %(Af) = i»1 • • • vp for some prime numbers vx, • ■ • , vP
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(?M), then M can be imbedded as a complete intersection manifold in

Pi+V(cy

Proof. In consideration of Theorem 3.1, we may assume that M is

imbedded as a complete intersection manifold in P2+P(C). From Theorem

2.1 we have

XW) [t'î*,-('i1)z-+l<-
Let

f(ax, • ■ ■ , aP) = ¡^       ) - \    {    ) 2 a°> + 2 a"1aH-

Then it is easy to prove that f(ax, ■ ■ ■ , aB)^(p + 3)¡(p+l)>l. Therefore

at least one of ax must be equal to 1.    Q.E.D.

Theorem 3.8. Let M be a 4-dimensional complete intersection manifold.

If x(M) = vx ■ ■ ■ vp for some prime numbers vx,---,vp (t^I), then M

can be imbedded as a complete intersection manifold in P3^„(C).

Proof. In consideration of Theorem 3.1, we may assume that M

is imbedded as a complete intersection manifold in Pi+p(C). From

Theorem 2.1, we have

L¿r0 \4-kI   J

We consider the Diophantine equation

(,5, !<-< !*)'-=••
Let

fiau ■■■,ap) = 2 i-iy(P + %k- I.
¿To \4 - kl

Then we have

*~c tve tv*da.

- y )(aî + axax + a2) + a3x + axax + axa2 + a3.

It is easy to show that/has no critical point in {(a,, ■ ■ ■ , ap)e R^a^

2, ■ • ■ , a>,2}. We can also prove, by an induction, that/>0 on the

boundary of {iax, ■ ■ ■ , a„) e Rp\ax^2, ■ ■ ■ , at>.l}. These facts imply

that />0 on {(al7 ■■ ■ ,a„)e Rp\ax^2, ■ ■ ■ , ap^2}. Therefore Theorem

3.8 follows from Lemma 3.2.
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