THE RING OF HOLOMORPHIC FUNCTIONS ON A STEIN COMPACT SET AS A UNIQUE FACTORIZATION DOMAIN

H. G. DALES

ABSTRACT. Let Γ be the ring of germs of analytic functions on a Stein compact subset K of a complex-analytic space. Necessary and sufficient conditions on K for Γ to be a unique factorization domain are given.

Let X be a complex-analytic space with structure sheaf \mathcal{O} , and let K be a compact Stein subset of X, so that K has a neighbourhood base in X consisting of Stein open subsets of X. Let $\Gamma = \Gamma(K, \mathcal{O})$, the ring of germs of analytic functions on K. In this note, we determine necessary and sufficient conditions for Γ to be a unique factorization domain.

Conditions for Γ to be a Noetherian ring have been given by Siu [5], following an earlier result of Frisch [2]:

THEOREM (SIU). Let K be a compact Stein subset of an analytic space (X, \mathcal{O}) . Then $\Gamma(K, \mathcal{O})$ is Noetherian if and only if $V \cap K$ has only finitely many topological components for each complex-analytic subvariety V defined in an open neighbourhood of K.

If z is a point of an arbitrary complex-analytic space, then \mathcal{O}_z , the ring of analytic function germs at z, is not necessarily a unique factorization domain, for, if it is, then z is a normal point of X. On the other hand, if z is a simple point of X, which means that \mathcal{O}_z is a regular local ring, or, equivalently, that a neighbourhood of z in X can be mapped bianalytically onto an open set in \mathbb{C}^n , then \mathcal{O}_z is a unique factorization domain by [4, §4.2]. We shall suppose explicitly that \mathcal{O}_z is a unique factorization domain for each z in K. Thus, the hypotheses on K are satisfied if K is a compact subset of a complex manifold X and K is the intersection of a sequence of open Stein manifolds (i.e., K is a holomorphic set).

We shall require Cartan's theorems A and B for coherent analytic sheaves over the compact set K. These theorems are stated for the context in which we require them in [1, Théorème 1].

Received by the editors April 10, 1973 and, in revised form, July 27, 1973.

AMS (MOS) subject classifications (1970). Primary 32E25; Secondary 13E05, 13F15. Key words and phrases. Analytic space, germs of analytic functions, Stein compact set, Noetherian ring, unique factorization domain.

[©] American Mathematical Society 1974

Let \mathscr{M} denote the sheaf of meromorphic functions on K, and let \mathscr{O}^* denote the sheaf of invertible elements in \mathscr{O} (with multiplication as group operation). We say that K is a *Cousin* II set if the second Cousin problem can be solved on K: if $\{U_{\alpha}\}$ is a cover of K consisting of (relatively) open subsets, and if $f_{\alpha} \in \Gamma(U_{\alpha}, \mathscr{O})$ such that $f_{\alpha}f_{\beta}^{-1} \in \Gamma(U_{\alpha} \cap U_{\beta}, \mathscr{O}^*)$ for each α, β , then there exists $f \in \Gamma(K, \mathscr{O})$ such that $f_{\alpha}^{-1} \in \Gamma(U_{\alpha}, \mathscr{O}^*)$ for each α . The set K is a strong Poincaré set if, given $m \in \Gamma(K, \mathscr{M})$, there exist $f, g \in \Gamma(K, \mathscr{O})$ such that $m=fg^{-1}$ and $(f_z, g_z)=1_z$ in \mathscr{O}_z ($z \in K$) (i.e., the germs f_z and g_z are coprime for each z). Let I be an ideal in $\Gamma(K, \mathscr{O})$, and let \mathscr{I} be the sheaf of ideals of $\mathscr{O}|K$ generated over K by I. Then we say that I is a *locally principal ideal* in Γ if \mathscr{I}_z is a principal ideal in \mathscr{O}_z for each $z \in K$.

THEOREM 1. Let K be a compact Stein subset of a complex-analytic space X with structure sheaf \mathcal{O} , and suppose \mathcal{O}_z is a unique factorization domain for each $z \in K$. Suppose that $\Gamma = \Gamma(K, \mathcal{O})$ is a Noetherian domain. Then the following conditions are equivalent:

- (1) Γ is a unique factorization domain;
- (2) $H^{2}(K; \mathbb{Z}) = \{0\};$
- (3) K is a Cousin II set;
- (4) K is a strong Poincaré set;
- (5) every locally principal ideal in Γ is a principal ideal.

PROOF. We first prove the implications which do not require the supposition that Γ be a Noetherian ring.

 $(2) \Leftrightarrow (3) \Rightarrow (4)$. Using Cartan's Theorems A and B, these are standard results (cf. [3, VIII, B]).

(5) \Rightarrow (3). Let $\{f_{\alpha}; U_{\alpha}\}$ be data for the second Cousin problem on K. Define the sheaf \mathscr{F} over K by the conditions $\mathscr{F}_{z} = \langle f_{\alpha,z} \rangle$ $(z \in U_{\alpha})$. Then \mathscr{F}_{z} is well defined, for $\langle f_{\alpha,z} \rangle = \langle f_{\beta,z} \rangle$ whenever $z \in U_{\alpha} \cap U_{\beta}$, and \mathscr{F} is a coherent analytic sheaf over K. Let $I = \Gamma(K, \mathscr{F})$ be the algebra of sections of \mathscr{F} over K, and let I generate \mathscr{I} in $\mathscr{O}|_{K}$. By Theorem A, $\mathscr{I}_{z} = \mathscr{F}_{z}$ for $z \in K$, so that I is a locally principal ideal in Γ . By hypothesis, I is a principal ideal in Γ , say $I = \langle f \rangle$. Clearly, f is a solution of the problem with data $\{f_{\alpha}; U_{\alpha}\}$.

(1)=(4). Let $m \in \Gamma(K, \mathscr{M})$. Since K is a Stein set, we can write $m=f_1g_1^{-1}$ with $f_1g_1 \in \Gamma$ (cf. [3, VIII, B, 10]), and, by Theorem A again, we can suppose that $(f_{1,z}, g_{1,z})=1_z$ for some fixed $z \in K$. Clearly, using the hypothesis, we can also suppose that $(f_1, g_1)=1$ in Γ . Let w be any point of K, and write $m=f_2g_2^{-1}$ with $f_2, g_2 \in \Gamma$, $(f_2, g_2)=1$ in Γ , and $(f_{2,w}, g_{2,w})=1_w$. Then $f_1g_2=f_2g_1$ in Γ , and, since Γ is a unique factorization domain, $f_1 \sim f_2$ and $g_1 \sim g_2$ in Γ . Thus, $(f_{1,w}, g_{1,w})=(f_{2,w}, g_{2,w})=1_w$ in \mathscr{O}_w for each

 $w \in K$. It follows that f_1 and g_1 are coprime at each point of K, and we have written $m = f_1 g_1^{-1}$ in the required form.

In the proof of the remaining implications, we use the fact that Γ is a Noetherian domain.

(4) \Rightarrow (1). Since Γ is Noetherian, it is sufficient to prove that every irreducible element in Γ is prime. Let f be an irreducible in Γ , and suppose that $gh \in \langle f \rangle$, say $gh = ff_1$ in Γ . Since K is a strong Poincaré set and Γ is an integral domain, we may suppose that $(g_z, f_{1,z}) = 1_z$ in \mathcal{O}_z $(z \in K)$. Since $g_z h_z = f_z f_{1,z}$, $h_z \in \langle f_{1,z} \rangle$ $(z \in K)$, and so, from Theorem B, $h \in \langle f_1 \rangle$ in Γ , say $h = f_1 h_1$. Thus, $gh_1 = f$, and since f is irreducible, either g or h_1 is a unit in Γ . In the former case, $h \in \langle f \rangle$, and in the latter, $g \in \langle f \rangle$, so that f is a prime, as required.

(1) \Rightarrow (5). Let *I* be a locally principal ideal in Γ , and let \mathscr{I} be as above. Since *I* is finitely generated, \mathscr{I} is a coherent analytic sheaf over *K*.

Let $z \in K$. By hypothesis, \mathscr{I}_z is a principal ideal in \mathscr{O}_z , and so, by Theorem A, there exists $f \in I$ such that $\mathscr{I}_z = \langle f_z \rangle$ in \mathscr{O}_z . Since K is compact, there exist $f_1, \dots, f_k \in I$ such that, for each $z \in K$, $\mathscr{I}_z = \langle f_{i,z} \rangle$ for some $i=i(z) \in \{1, \dots, k\}$. By Theorem B, $I = \langle f_1, \dots, f_k \rangle$. Since Γ is a unique factorization domain, f_1, \dots, f_k have a highest common factor in Γ , say $g = (f_1, \dots, f_k)$. Let $h_i = f_i g^{-1}$ $(i=1, \dots, k)$, so that $(h_1, \dots, h_k) = 1$.

We now use hypothesis (1) to prove that, if $(p_1, \dots, p_n)=1$ in Γ , then $(p_{1,z}, \dots, p_{n,z})=1_z$ in \mathcal{O}_z $(z \in K)$. The result holds for the case n=2 by the result '(1) \Rightarrow (4)', above, and the general result follows by an immediate inductive argument. Thus, we see that we have $h_1, \dots, h_k \in \Gamma$ with

(*)
$$(h_{1,z}, \cdots, h_{k,z}) = 1_z$$
 in $\mathcal{O}_z \ (z \in K)$.

Take $z \in K$, and suppose that $\mathscr{I}_z = \langle f_{j,z} \rangle$. If $i \in \{1, \dots, k\}$, there exists $p_{i,z} \in \mathscr{O}_z$ such that $f_{i,z} = p_{i,z}f_{j,z}$. Thus, $h_{i,z} = p_{i,z}h_{j,z}$ and so $h_{j,z}|h_{i,z}$ in \mathscr{O}_z ($i \in \{1, \dots, k\}$). This shows that $h_{j,z}|(h_{1,z}, \dots, h_{k,z})$ in \mathscr{O}_z . From (*), $h_{j,z}$ is a unit in \mathscr{O}_z , and we have proved that the functions h_1, \dots, h_k have no common zero on K. It is a consequence of Cartan's Theorem B [3, VIII, A, 16] that there exist $p_1, \dots, p_k \in \Gamma$ such that $\sum p_i h_i = 1$. Hence, $g = \sum p_i gf_i \in I$, $I = \langle g \rangle$, and I is a principal ideal in Γ , as required.

This concludes the proof of the theorem. \Box

Suppose that Γ is a regular Noetherian domain in the sense of Kaplansky [4]. Then the following proof that '(5) \Rightarrow (1)' holds.

Let *I* be an ideal in Γ generating the coherent sheaf \mathscr{I} in $\mathscr{O}|K$. Suppose that *I* is invertible [4, p. 37] in Γ . We first note that \mathscr{I}_z is invertible in \mathscr{O}_z ($z \in K$). We must prove that $\mathscr{O}_z \subset \mathscr{I}_z \mathscr{I}_z^{-1}$, so take $f_z \in \mathscr{O}_z$. Then $f_z \in \sum f_{i,z} \mathscr{O}_z$ with $f_i \in \Gamma$. Since *I* is invertible, there exist $g_{ij} \in I$ and $h_{ij} \in I^{-1}$ such that $f_i = \sum_j g_{ij} h_{ij}$ for each *i*. Thus, $f_z \in \sum_{i,j} g_{ij,z} h_{ij,z} \mathscr{O}_z$. Clearly, $g_{ij,z} \in \mathscr{I}_z$. Also, $h_{ij,z} \in \mathscr{I}_z^{-1}$, for, if $p_z \in \mathscr{I}_z$, then, by Theorem A,

 $p_z \in \sum q_{k,z} \mathcal{O}_z$ with $q_k \in I$, and, since *I* is invertible, $h_{ij}(\sum q_k \Gamma) \subset \Gamma$, so that $h_{ij,z}p_z \in \mathcal{O}_z$ and $h_{ij,z} \in \mathscr{I}_z^{-1}$, as required. Thus, $\mathcal{O}_z \subset \mathscr{I}_z \mathscr{I}_z^{-1}$.

Now, by [4, Theorem 60], \mathscr{I}_z is principal in \mathcal{O}_z ($z \in K$), so, by hypothesis, *I* is principal in Γ , and the result follows by [4, Theorem 185]. \Box

If K is a compact, holomorphic set in \mathbb{C}^n for which Γ is a Noetherian domain, then Γ is a regular Noetherian domain. To show this, it suffices to show that every maximal ideal of Γ can be generated by an R-sequence [4, §3.1]. But if M is a maximal ideal of Γ , then $M = \{f \in \Gamma : f(z^0) = 0\}$ for some $z^0 \in K$, and it is clear that the elements $z_1 - z_1^0, \dots, z_n - z_n^0$ form the required R-sequence.

COROLLARY. Let Δ be a compact polydisc in \mathbb{C}^n . Then $\Gamma(\Delta, \mathcal{O})$ is a unique factorization domain.

PROOF. That $\Gamma(\Delta, \mathcal{O})$ is a Noetherian domain is noted in [2]. Certainly, $H^2(\Delta; \mathbb{Z}) = \{0\}.$

When $\Gamma = \Gamma(K, \mathcal{O})$ is Noetherian, we have the following Nullstellensatz for Γ . We use the notation of [3, II, E].

PROPOSITION 2. Let K be a compact Stein subset of a complex-analytic space X, and suppose that Γ is a Noetherian domain. Let I be an ideal in Γ . Then id loc I=rad I.

PROOF. Certainly, rad $I \subseteq$ id loc *I*. Take $f \in$ id loc *I*. If $z \in K$, then there exists $k(z) \in N$ such that $f_z^{k(z)} \in \mathscr{I}_z$. This is the standard Nullstellensatz, proved in the local complex-analytic case in [3, III. A. 7]; the general case follows by writing \mathscr{I} locally as a quotient of an ideal sheaf in \mathbb{C}^n [6, Lemma]. For w in a neighbourhood of z, $f_w^{k(z)} \in \mathscr{I}_w$. Take a finite refinement of the neighbourhoods covering K, corresponding to z_1, \dots, z_m , and let $k = \max\{k(z_1), \dots, k(z_m)\}$. Then $f_z^k \in \mathscr{I}_z$ ($z \in K$), and, since \mathscr{I} is coherent, $f^k \in I$. Thus, id loc $I \subseteq$ rad *I*, as required. \Box

Let $f \in \Gamma$, and write $V(f) = \{z \in K : f(z) = 0\}$. A variety V is irreducible if $V = V_1 \cup V_2$, where V_1 and V_2 are varieties, implies that either $V = V_1$ or $V = V_2$.

THEOREM 3. Let K and X be as in Theorem 1. Suppose that Γ is a Noetherian domain which is a unique factorization domain, and let $f \in \Gamma$.

(i) V(f) is an irreducible variety if and only if $f=g^n$, where g is irreducible in Γ .

(ii) If $f = \prod_{i=1}^{n} f_i^{k_i}$ is the factorization of f into irreducible factors in Γ , then $V(f) = \bigcup_{i=1}^{n} V(f_i)$ is the decomposition of V into its irreducible branches.

PROOF. If $f \in \Gamma$ is irreducible, then $\langle f \rangle$ is prime, and so, by Proposition 2, id V(f) is prime. The results now follow by the same arguments as those of [3, II, E].

I am grateful to Dr. P. F. Smith and Professor E. L. Stout for valuable conversations on the above results.

REFERENCES

1. H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77–99. MR 20 #1339.

2. J. Frisch, Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math. 4 (1967), 118-138. MR 36 #5388.

3. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1965. MR 31 #4927.

4. I. Kaplansky, *Commutative rings*, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234.

5. Y.-T. Siu, Noetherianness of rings of holomorphic functions on Stein compact subsets, Proc. Amer. Math. Soc. 21 (1969), 483–489. MR 40 #404.

6. ——, Hilbert Nullstellensatz in global complex-analytic case, Proc. Amer. Math. Soc. 19 (1968), 296–298. MR 36 #5391.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GLASGOW, GLASGOW, G12 8QW SCOTLAND

Current address: Department of Mathematics, University of California, Los Angeles, California 90024