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THE RING  OF HOLOMORPHIC FUNCTIONS  ON A
STEIN  COMPACT SET  AS  A UNIQUE

FACTORIZATION  DOMAIN

H.   G.   DALES

Abstract. Let V be the ring of germs of analytic functions on

a Stein compact subset A of a complex-analytic space. Necessary

and sufficient conditions on K for T to be a unique factorization

domain are given.

Let J be a complex-analytic space with structure sheaf (9, and let

K be a compact Stein subset of X, so that K has a neighbourhood base in

X consisting of Stein open subsets of X. Let Y= r(AT, (9), the ring of germs

of analytic functions on A'. In this note, we determine necessary and suf-

ficient conditions for T to be a unique factorization domain.

Conditions for T to be a Noetherian ring have been given by Siu [5],

following an earlier result of Frisch [2]:

Theorem (Siu). Let K be a compact Stein subset of an analytic space

iX, 0). Then YiK, (9) is Noetherian if and only if VnK has only finitely

many topological components for each complex-analytic subvariety V

defined in an open neighbourhood of K.

If z is a point of an arbitrary complex-analytic space, then (5Z, the

ring of analytic function germs at z, is not necessarily a unique factori-

zation domain, for, if it is, then z is a normal point of X. On the other

hand, if z is a simple point of X, which means that (Vz is a regular local

ring, or, equivalently, that a neighbourhood of z in X can be mapped

bianalytically onto an open set in C", then (9Z is a unique factorization

domain by [4, §4.2]. We shall suppose explicitly that Gz is a unique factori-

zation domain for each z in K. Thus, the hypotheses on K are satisfied

if K is a compact subset of a complex manifold A-and A'is the intersection

of a sequence of open Stein manifolds (i.e., K is a holomorphic set).

We shall require Cartan's theorems A and B for coherent analytic

sheaves over the compact set K. These theorems are stated for the context

in which we require them in [1, Théorème 1].
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Let ~ä denote the sheaf of meromorphic functions on K, and let (V*

denote the sheaf of invertible elements in (9 (with multiplication as group

operation). We say that K is a Cousin II set if the second Cousin problem

can be solved on K: if {[/„} is a cover of K consisting of (relatively) open

subsets, and if/, e Y(UX, (9) such that fofo1 e Y(UxrMJß, (9*) for each

a, ß, then there exists fe r(AT, 0) such that ff-1 e YiUx, (9*) for each a.

The set K is a strong Poincaré set if, given m e F(A', ^), there exist

f,g e Y(K, (9) such that m=fg~1 and ifo,gz)=lz in (9Z (z e AY (i.e., the
germs fo and £2 are coprime for each z). Let 7 be an ideal in Y(K, (V),

and let J be the sheaf of ideals of (9\K generated over K by 7. Then we

say that 7 is a locally principal ideal in T if J\ is a principal ideal in fi>z

for each ze K.

Theorem 1. Let K be a compact Stein subset of a complex-analytic

space X with structure sheaf (9, and suppose (9Z is a unique factorization

domain for each ze K. Suppose that Y=Y(K, (9) is a Noetherian domain.

Then the following conditions are equivalent:

(1) V is a unique factorization domain;

(2) 772(A-;Z)={0};
(3) K is a Cousin II set;

(4) K is a strong Poincaré set;

(5) every locally principal ideal in Y is a principal ideal.

Proof. We first prove the implications which do not require the

supposition that T be a Noetherian ring.

(2)<=>(3)=>(4). Using Cartan's Theorems A and B, these are standard

results (cf. [3, VIII, B]).

(5)=>(3). Let {fo; Ua} be data for the second Cousin problem on K.

Define the sheaf ^ over K by the conditions ■^rz = (fo.z) (z e Ux). Then

J% is well defined, for (fo,z) = {fß,z) whenever z e Uxt~MJß, and .9F is a

coherent analytic sheaf over K. Let 1= Y(K, ¿F) be the algebra of sections

of J5" over K, and let I generate J in <S\K. By Theorem A, JZ=SFz for

z e K, so that / is a locally principal ideal in Y. By hypothesis, 7 is a prin-

cipal ideal in Y, say 7=(/). Clearly,/is a solution of the problem with

data {fo; Ux}.
(1)=>(4). Let m eY(K,<J(). Since K is a Stein set, we can write

m=fxgx1 with/,^, e Y (cf. [3, VIII, B, 10]), and, by Theorem A again,

we can suppose that (fX-z, gx.z)=h f°r some fixed z e K. Clearly, using the

hypothesis, we can also suppose that (fo, gx)= 1 in Y. Let w be any point

of 7C and write m=f2g21 with/2, g2 e Y, (f2, g2)= 1 in I\ and (/2li,, g2J =

lw. Then fog2=fogx in Y, and, since T is a unique factorization domain,

/i~/2 and ^1~^2 in Y. Thus, ifo,w, gxJ = (f2,w, g2J=K- in Ow for each
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w e K. It follows that fo and gx are coprime at each point of K, and we

have written m=fogx1 in the required form.

In the proof of the remaining implications, we use the fact that T is a

Noetherian domain.

(4)=>(1). Since Y is Noetherian, it is sufficient to prove that every

irreducible element in Y is prime. Let/be an irreducible in Y, and suppose

that gh e (/), say gh=ffx in Y. Since AT is a strong Poincaré set and Y is

an integral domain, we may suppose that igz,fo,z)=lz in (9Z (z e K).

Since gzhz=fofXz, hz e(foiZ) (z e K), and so, from Theorem B, h e(fo)

in T, say h=fohx. Thus, ghx=fo and since/is irreducible, either g or hx

is a unit in Y. In the former case, h e (/), and in the latter, g e </), so

that/is a prime, as required.

(1)=>(5). Let 7 be a locally principal ideal in Y, and let J be as above.

Since 7 is finitely generated, J is a coherent analytic sheaf over K.

Let z e K. By hypothesis, J'z is a principal ideal in (9Z, and so, by

Theorem A, there exists/e 7 such that J* z = (fo) in (Vz. Since AT is compact,

there exist/, ■ • • ,foe I such that, for each z e K, Jfz=(fo,z) for some

/=/(z) e {1, • ■ -, k}. By Theorem B, I=(fo, • • • ,fo). Since T is a unique
factorization domain, fo, • • ■ ,fo have a highest common factor in Y,

say g=(fo ' ' ' ./*)• Let ht=fig~1 (i= !» ■ • • . k)>so that ihx, ■ ■ ■ , hk)=l.
We now use hypothesis (1) to prove that, if (/»,, • • • ,pn)=l in Y, then

ipX:Z, • • ■ ,pn_z)=lz in (9Z iz e K). The result holds for the case n = 2 by

the result '(1)=>(4)', above, and the general result follows by an immediate

inductive argument. Thus, we see that we have hx, ■ ■ ■ , hk e Y with

(*) (hx,z, ■ ■ ■ , hk,z) = lz   in (9zizeK).

Take z e K, and suppose that /,»(/(il), If / e {1, • • ■ , k}, there

exists /»j,, e(9z such that/,z=/»¿,2/,2. Thus, hLz=ptzhLz and so Ä^JÄ,,,

in 0Z (/ e {1, ■ ■ • , /f}). This shows that hjz\ihX-z, ■ ■ ■ , hkz) in 0Z. From

(*), hjz is a unit in (9Z, and we have proved that the functions hx, • • ■ , hk

have no common zero on K. It is a consequence of Cartan's Theorem B

[3, VIII, A, 16] that there exist px, ■ ■ ■ ,pk e Y such that ZpA=l.

Hence, g=Y.Pigf 6 F T=(g)i and 7 is a principal ideal in r, as required.

This concludes the proof of the theorem.    D

Suppose that T is a regular Noetherian domain in the sense of Kaplansky

[4]. Then the following proof that '(5)=>(1)' holds.

Let 7 be an ideal in Y generating the coherent sheaf,/ in (9\K. Suppose

that 7 is invertible [4, p. 37] in Y. We first note that J'z is invertible in

<9Z (zeK). We must prove that G^JJ'1, so take fo e tVz. Then

fo e !Lfi,z®z with / e Y. Since 7 is invertible, there exist gtj e 7 and

ha el-1 such that /,-2ijr«*o for each /. Thus, foe 2ijgiLzhiLzl9z.

Clearly, gijz e J'z. Also, hiUz e ifx\ for, if pz e Jz, then, by Theorem A,
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Pz 6 21k.z@z with qk e I, and, since 7 is invertible, Au(2 ?if)c I\ so that

hijzpz e (9Z and /¡„iZ e J^1, as required. Thus, (9zc JZJ~1.

Now, by [4, Theorem 60], Jz is principal in (9Z {z e K), so, by hy-

pothesis, 7 is principal in T, and the result follows by [4, Theorem 185].   D

If K is a compact, holomorphic set in C" for which T is a Noetherian

domain, then T is a regular Noetherian domain. To show this, it suffices

to show that every maximal ideal of Y can be generated by an 7v-sequence

[4, §3.1]. But if M is a maximal ideal of Y, then M={fe r:/(z°)=0}

for some. z° e K, and it is clear that the elements zx—z\, • • ■ , zn—Zn

form the required R- sequence.

Corollary. Let à be a compact polydisc in Cn. Then T(A, (9) is a

unique factorization domain.

Proof. That T(A, (V) is a Noetherian domain is noted in [2]. Certainly,

7/2(A;Z) = {0}.

When T= T(A, (9) is Noetherian, we have the following Nullstellensatz

for T. We use the notation of [3, II, E].

Proposition 2. Let K be a compact Stein subset of a complex-analytic

space X, and suppose that Y is a Noetherian domain. Let I be an ideal in Y.

Then id loc 7=rad 7.

Proof. Certainly, rad 7c id loc 7. Take/e id loc 7. If z e K, then there

exists rV(z) e TV such that/*'*' e J z. This is the standard Nullstellensatz,

proved in the local complex-analytic case in [3, III. A. 7]; the general

case follows by writing ./ locally as a quotient of an ideal sheaf in Cn

[6, Lemma]. For w in a neighbourhood of z,/*(2) e/r Take a finite

refinement of the neighbourhoods covering K, corresponding to zx, ■ ■ ■ ,

zm, and let k=max{kizx), ■ ■ • , /c(z,„)}. Then /*' e/,(z6 K), and, since

J is coherent,/4 e 7. Thus, id loc 7c rad 7, as required.    D

Let/e T, and write K(/) = {z e K:foz) = 0}. A variety V is irreducible

if V=VX\JV2, where Vx and V2 are varieties, implies that either V=VX

or V= V2.

Theorem 3. Let K and X be as in Theorem 1. Suppose that Y is a

Noetherian domain which is a unique factorization domain, and let fe Y.

(i) Vif) is an irreducible variety if and only iff=g", wheregis irreducible

in Y.

(ii) Iff—TYLifi' is the factorization of f into irreducible factors in Y,

then F(/)= UÍLi V(fo) is the decomposition of V into its irreducible branches.

Proof. If/e Y is irreducible, then (fo) is prime, and so, by Proposition

2, id Vif) is prime. The results now follow by the same arguments as

those of [3, II, E].
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conversations on the above results.
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