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A  GENERALIZATION  OF  AN  INEQUALITY  OF  COPPEL

G.   A.   HEWER

Abstract. Upper and lower bounds for the solutions of a

linear ordinary differential equation are determined from the

solutions of upper and lower matrix comparison equations. The

coefficients of the comparison equations are computed with the

help of Lozinskii's logarithmic "norm"

1(A) =  lim  [\l + hA\ - l]//i,
A—+0

and the concept of the "matricial norm" as a matrix of scalar

norms. Using these estimates some new criteria for the stability

of composite systems are obtained.

1. Introduction.    The   Lozinskil   logarithmic   norm   [8]   of an  nxn

matrix A is

l(A) = limi\I + hA\ - 1)///
/l->+0

where | • | is any matrix norm compatible with some vector norm r¡i • ).

The purpose of this note is to introduce a matricial logarithmic norm

(a mapping from a set of square matrices into a set of equal or lower

dimensional matrices) and thereby obtain new bounds for the solutions

of ordinary linear differential equations. These new bounds subsume

those estimates obtained in the following theorem by W. A. Coppel

[2, p. 48].

Theorem 1.    If the nxn matrix A it) is defined and continuous for

t^.t0^.0, then every solution of the equation

(1.1) x = Ait)x,

satisfies the estimate

(1.2) rjixit9))exp(-£K-Ais)) ds^j S i,(x(í)) = »K*(fo))exp£/(/l(s)) ds

for t>t0^0.
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In other words, upper and lower bounds for any solution of (1.1)

are determined by the first order comparison equation j=/(/4(/))y.

For example, if Jj(x)=(2*U l*¿l2)1/2 (Euclidean norm), then liA) is the

largest eigenvalue of \(A + A') (A' being the transpose of A). With this

norm the estimate (1.2) is attributed to Wintner [12] or Wazewski [11].

Other generalizations of this inequality are obtained in [6, p. 153] or [9]

by extending the definition of /( • ) to include Banach space operators.

In all cases the domain of the function exp( ■ ) in inequality (1.2) is

determined by a real valued function /( • ). Here an estimate for the solu-

tions of (1.1) is obtained in which the domain of the function exp( • )

is a set of îXi matrices (1^5^order of A). This new estimate provides

upper and lower bounds for solutions of (1.1) as determined by an ith

order linear differential comparison equation whose fundamental matrix

solution is a positive matrix. Not only does this subsume Coppel's estimate,

but the stability behavior of (1.1) can be determined from a matrix function

of A. This feature should be useful when the dimension of A is large and

A can be partitioned into subblocks whose stability behavior can be easily

determined. Finally, as an application of this estimate, some new stability

criteria for partitioned systems are given in terms of this matrix function

of A.

2. Matricial logarithmic norms. First we recall some terminology

and introduce some notation.

Let Rn denote a real //-dimensional vector space with natural partial

order defined between any two vectors x, y e Rn by xSy if and only if

xi=y¡ (¡=U ''",«) and F" be the set of x e Rn with x^O. The set

38S={PX, ■ ■ ■ ,PS} of nxn projection matrices which satisfy the'relations

P2S=PS, PiPj=0=the null matrix i?¿j and Px + - ■ -+Ps=I=the identity

matrix, is a partition set for A whenever its elements commute with A.

The vector valued function Ns(x) = (r¡(Pxx), ■■ ■ , t](Psx)) is a mapping

from Rn into R'l and satisfies the three conditions

(i) Ns(x) = \X\Ns(x) (X is any real number),

(ii) Ns(x+y)SNs(x) + Ns(y),

(iii) 7Ys(x)=0 implies x = 0 in Rn,

which are the axioms of a vectorial norm [10, p. 267]. For any nxn

matrix A the sxs matrix

M,(A) = (|F¿4F,|)¿,JW,...,S

is a mapping from the set of nxn matrices with entries from R into the

set of îXj matrices with entries from R+ and is a matricial norm as

defined in [3] or [10]. This norm satisfies (with obvious modification)

properties (i), (ii), and (iii) of the vectorial norm Ns( • ).
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Clearly, when 32>X = {I} (the identity partition), then N(x) = r](x) and

MxiA) = \A\.

Proposition 1. If \ • \ and r¡i • ) are compatible, then so are 7VS( • )

and Msi • ) compatible, i.e., Ns(Ax)SMs(A)Ns(x) for any nxn matrix A

and 1 SsSn.

Proof. For any partition set 3PS, using the definition of a partition

set, we have

Ns(Ax) = (V(PxAx),---,V(PsAx))

S Ms(A)Nfx).

The partial order BSA for any two square matrices means that

x'(A-B)x^0.

The matricial logarithmic norm for any nxn matrix A and partition

set 0>l is the íxj matrix

(2.1) L,iA) = lim(Ms(I + hA) - Ms(I))¡h.
A-»+0

For completeness we show that the limit in (2.1) exists. For any 0<Ö<1,

MsiI+6hA)<6MsiI+hA) + il-6)MsiI) and hence

(Oh)-\Ms(l + QhA) - MS(I)) S h~\Ms(I + hA) - Ms(/)) S MS(A).

Thus, the difference ratio in (2.1) is a nondecreasing function of// and is

bounded by the matrix ±MS(A).

As an example, if r¡(x) is the Euclidean norm, then the diagonal ele-

ments of LsiA) will be the largest eigenvalues of the main diagonal

partitions of A and the off-diagonal elements of LsiA) will be the spectral

norm of the matrices in the off-diagonal partitions of A. Also, for the

identity partition Lx(A) = l(A).

lust as 1(A) which can assume negative values is not a matrix norm,

LS(A) is not a matricial norm. However, they do have the following

properties in common.

Theorem 2. If A and B are any nxn matrices and 38 s is any partition

set for A and B (\SsSn), then

(a) LS(XA) = \X\LS(A) (X any real number),

(b) LS(A) = LS(A'),

(c) LfA+B)SLs(A) + LfB),
(d) Ms(Ls(A))SMs(Ay

(e) MS(LS(A)-LS(B))SMS(A-B),

(f) Ms(exp ^)^exp LS(A).
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Proof. Properties (a), (b), and (c) are easily verified and (d) follows

because as already shown — MS(A)SLS(A)SMS(A). Property (e) is a

consequence of (c) and (d).

Finally to prove (f), we merely sketch the proof. For every e>0

there exists a positive integer m0 such that for m^.m0, Ms(exp A) —

Ms((I+Alm)m)SeMs(l) (Ms(l) has all entries equal to 1). Whence,

Ms(exp A)

S MJiil + A\m)m) + eMfl)

S (Ms(l) + m(Ms(I + Aim) - Ms(l))/m)m + eMfl)

S (MS(I) + iLsiA) + eM(l))/mf + eM,(l) -> exp(Ls(/Q)   asm-oo.

3. A generalization of Coppel's inequality. Let Y(t) denote the fun-

damental matrix solution of the comparison equation for /^/„^O,

(3.1) y = Ls04(/))y,   Yit0) = i.

Since the off-diagonal elements of the coefficient matrix in (3.1) are all

nonnegative, Y(t)^.0 (Y(t) is a nonnegative matrix) fori ^/,0^0 [l,p. 138].

Theorem 3.    // 38s is any partition set for A(t), then every solution of

(1.1) satisfies the estimate for /^f05;0

(3.2) Yi-t)Nsixit0)) S Ns(x(t)) S YWMQ)-

Proof.    Let /•(r)=7Vs(x(f)) and

r+it) = lim(A/s(x(0 + hxit)) - iV,(x(i)))/A.
Ä->+0

Properties (i) and (ii) of a vectorial norm are sufficient [2, p. 3] to show

that this limit exists. Using Proposition 1, we have

Nfxit) + hxit)) = Nfol + hAit))xit)) S Mil + hA(t))Ns(x(t)),

whence r+it)SLsiAit))r{t). The vector Y(t)Ns(x(t0)) is a solution of (3.1)

and is an upper bound for the latter differential inequality [6, p. 28] and

so the first half of the inequality is established. The other half of the

theorem is obtained by replacing t by — t. Clearly, for the identity par-

tition Coppel's inequality is obtained.

4. Diagonally dominant matrices, positive matrices and stability.    The

stability behavior of (1.1) can often be inferred from the corresponding

behavior of (3.1). Such techniques are illustrated in [6]. In this section,

we assume that A is a constant matrix and obtain some stability criteria

for (1.1) which exploit the matrix properties of LS(A) and exp(F5(^)).
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The matrix LsiA) is diagonally dominant if

(4.1) KP,APi) ̂  -    2    \P¡APk\        (j= h ■■-,*),
k=v,tc*i

Theorem 4. Given some partition set 32>s of A, if the matrix LsiA)

is diagonally dominant or the determinants of the nested set of principal

minors of LsiA) satisfy the inequalities

l(PxAPx)     \PXAP2\
KPXAPX) S 0,       det £ 0,

\P2APX\     l(P2AP2)l

(4.2)
>KPXAPX) ■■■\PXAPS

(-l)-detl • •        1^0,

\PSAPX\ ■ ■ ■ liPsAPs)/

and \PiAPj\ is nonzero for i¥^j, then every solution of (1.1) is uniformly

stable. If the inequalities in (4.1), (4.2) are all strict, then every solution of

(1.1) is asymptotically stable.

Proof. By Gersgorin's theorem [7] the real parts of the eigenvalues

of a (strictly) diagonally dominant matrix are all (less than) zero or less

than or equal to zero. The inequalities in (4.2) assure the same eigenvalue

behavior [4, p. 74]. If the inequalities are all strict, then the real parts of

the eigenvalues of the fundamental matrix solution exp LsiA)t of (3.1) are

all less than one and the proof is completed.

On the other hand, suppose they are not all strict and 1 is an eigenvalue

of the positive matrix solution [1, p. 137]. By Perron's theorem [7, p. 286],

1 is a simple eigenvalue and is greater than the modulus of any other

eigenvalue of this matrix. As is well known, this is sufficient for this matrix

to be uniformly bounded, which completes the proof.

In view of these results, other stability and instability criteria could also

be stated. For example, whenever Ps is the identity partition, any stability

criteria involving inequalities (4.2) include those of Coppel [2, p. 49].

Finally, by either using the composite estimate l(Ls(A)) or LS(A) directly

other stability criteria could be obtained.
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