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ESTIMATES FOR THE IMAGINARY PARTS
OF THE ZEROS  OF A POLYNOMIAL

ANDRÉ  GIROUX

Abstract. Estimates for the imaginary parts of the zeros of

a polynomial are obtained as a function of its L2 norm on an

interval with respect to an arbitrary weight. The resulting inequality

is sharp. Orthogonal polynomials with respect to the given weight

are used as the main tool. Simple consequences are deduced and

V norms are also considered.

1. Some twenty years ago, P. Turan [9], [10] started the study of

the location of the zeros of a polynomial given its development in terms

of a set of polynomials orthogonal on an interval of the real axis. This

turned out to be specially useful for dealing with the imaginary parts of

the zeros and was carried further by other people, notably by W. Specht

[5], [6], [7], [8]. It is the purpose of this note to establish some results

of this type; they are refinements of inequalities due to Specht.

2. Let co(x) be a nonnegative function on an interval (a, b) such that

all the integrals

£2m = Tx'Vx) dx       (m - 0,1, 2, • • •)
Ja

exist and O0>0. For «7 = 0, 1, 2, • • ■ , let

Ym(z) = qmzm + qZzm~l + ■■■, qm>0

be polynomials orthonormal on (a, b) with respect to the weight function

(x>(x). Any polynomial of degree n,

(1) foz) = b0 + bxz + ---+ bnzn

can be expanded in terms of the orthonormal polynomials i"B(z):

(2) foz) = aj¥0(z) + axWx(z) + ■■■+ anWniz).
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It was proved by Specht [5, p. 363] that all the zeros of foz) lie in the strip

Qn   \¡c=0    an     '

We prove the following theorem which sharpens this result.

Theorem 1.    Let t,x, £2, ■ • • , £„ be the zeros of the polynomial (2).

Then

(3)
n-l     n     2\l/2

h=l Qn     \ fc=n      an       'In    \*=0

with equality if and only ifa0=ax = - • •=a„_2 = 0 and Re(an_x¡an)=0.

Proof.    We start with the identity

t\aX = í"\fix)\2oJix)dx=   l/l».

In particular, we have |a„_il2 + |aj2^||/||2- Now

/(*) = a*?« fi (* - Q = o,i.(*" -( i Ç,)^"1 + • • •)

and

so that

(4)

n

/(z) = 2 aÄ(z) = an1n^ + {anqt + fl„-i?»-i)z"_1 + • • • ,
jfc=0

It is sufficient to prove the theorem when a„=l. In that case, since q* is

real, we have Im an__x=-(qjqn_x) £Li Im \k. Hence

In

Qn-l

2Im?*

so that

= \lman.x\S\an_x\Si\\f\\2-iy12,

1 + Ml
Wn-1'     ifc=l

Im£,

Let us apply this result to the polynomial g(z)=/(z)F]v (z—£v)/(z—£v)

where the zeros £v appearing in the product are precisely those for which

Im Çv<0. Since ||/|| = ||^||, we get

1 + (^)2(2iimgY=ii/f
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which is the statement of the theorem (when an=l). The proof shows

that equality will hold in (3) if and only if a0=ax = - ■ -=an_2 = 0, an_x¡an

is purely imaginary and the zeros £,, &»•••,{, of foz) are either all

above or all below the real axis. It is a remarkable fact (see [3, p. 21])

that the zeros of f(z)=x¥n(z) + icx¥n_x(z) satisfy this last condition for

any real number c.

3.    From (3), we get the following result for the zeros of the derivative

of foz):

Corollary 1.    Let f,, f2, • • • , £„_, be the zeros of the derivative of the

polynomial (2). Then

»=J « - 1 qn^/n^}   ak 2\1/2
2|Imf,| = -^2   -
fc=i «       In \&=o   an   '

with equality if and only if foz) is a multiple of the polynomialTn(z)T

ic*¥ n-iiz) with c rea>-

Indeed, it is known (see [1, p. 264]) that

n - I k=x nk=1

equality taking place precisely when all the zeros of foz) are on one side

of the real axis.

Another consequence of Theorem 1 is the following

Corollary 2.    There is at least one zero of the polynomial (2) in the

strip

1 n      /"-1    a    2W2

(5) Ita^-^I   -
»  In \*=o   an   i

It is easy to see that unless/(z) = a„Tn(z), there is strict inequality in

(5) for «_2. In fact, suppose that for some real number c, we had

Piz) = T„(z) + icYn^iz) m qn ft (* - («* + iß))
k=i

with a,, a2, • • • , a„ and ß real. Then all the zeros of the polynomial

Qiz) = Piz + iß)

would be real. There would therefore exist a real number x0 such that

o(n-1)(x0)=0. This would imply that 0=ßqn + cqn-X.

On the other hand, since the coefficient of zn_1 in g(z) would be real,

we would also get 0=nßqn + cqn_x. Hence ß=c=0.
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Corollary 2 is equivalent to the following fact; consider all polynomials

of the form (1) such that jl \f(x)\2co(x) dx=M2; then, if/(z) does not

vanish in the strip |Im z\SK, we have

\bn\ S qnM¡(l + inqnK\qn_x)2y'2.

4. Let r\x<r\2<- • •<??„, be the zeros of Tm(z), and let dm(Ç) denote

the distance of the point £ from the interval lr\x, rjm] which is the convex

hull of the zeros ofvFm(z). It has been proved by Specht that if t,x, £2, • • • ,

£„ are the zeros of the polynomial (2), then

2 (— d„ttn)dnUn-l) ■ ■ ■ dn(tk))2 <_ \  2
k=l \Qk-l ' <In Jc=0

We can easily deduce a comparable inequality from Theorem 1.

Theorem 2. Let t,x, £$,•••,£„ be the zeros of the polynomial (2).

Then

•^ <ln-iin^   ak 2\1/2

(6) 2 ¿ä) = —2 -
fc=l In   \k=0    an    '

with equality if and only ifa0=ax = - ■ -=an_2=0 and Re(a„_1/an)=0.

Proof.    Let

where

f*{z) = anqnY\iz-0
k=l

ik   — tk \fr)x S Rel,kSr¡n,

= Vn+ i\ík~Vn\    ifRe^>í7„,

= Vi + i \ík - Vil     ifReÇ^^,

for k= 1, 2, • • • , «. Then, by virtue of Theorem 1, we have

2 dniQ = 2 IIm Cl = (l/|fl„l)(«„-i/0(ll/*ll2 - M2)1'2,
k=l jfc=l

and it remains only to show that ||/*||^||/||. This can be done by using

the Gauss quadrature formula with nodes at the points r¡k (see for example

[2, p. 320]):

¡"b n

F(x)W(x) dx = 2 Hk,nFiVk) + illql)F\™H2ri)\,
Ja k=i

where r¡ is some point in (a, b), and the Hkn (the Christoffel numbers)

are all positive. In our case |/(x)|2 and |/*(x)|2 are both polynomials
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of degree 2« in x with their (2«)th derivative equal to (2ri)\\an\2qn. More-

over, we have \f*(f]k)\S\f(r¡k)\ for k=l, 2, • • • , «. Therefore

ll/T = [VW «to dx = 2 Hk.n l/*(rf + \an\2
Ja k=i

= 2 W*.» l/(rf + l«-l' = f V(x)|2 co(x) rfx = l/l».
k=i J"

Equality will hold in (6) if and only if/*(z) is of the form anx¥n(z) +

fln-^n-iCz) with Re(a*_!/a„) = 0 and ||/*|| = ||/||. Obviously the last

requirement implies that/*(z)=/(z). This completes the proof of Theorem

2.
Incidentally, this proof yields the following corollary.

Corollary 3.   Let

fox) = (x - x,)(x - x2) • • • (x - x„),

g(x) = (x - yx)(x - y2) • ■ • (x - yn_x),

with xI<j»1<x2<- • •<j)„_1<x„. Then, for any real number c, the zeros of

the polynomial h(x)=f(x) + icg(x) are all in the half strip Im z_0, xxS

Re zSxn, or all in the conjugate half strip.

Indeed, fox) and g(x) are orthogonal on an interval (a, b) containing

(xx, xn) with respect to an appropriate weight function and the above

reasoning applies.

5. It should be noted that other inequalities relating the expressions

Jg., |Im Q and (f* |/(x)|"co(x) dx)1'" can be deduced from the theorem

of M. Riesz-Thorin (see [11, p. 95]). We now assume that the interval

(a, b) is bounded. Let/(z) be a polynomial of the form (2). Then using the

inequalities

(K-il2 + KIT2 =      \f(x)\2 o>(x) dx)/,á(íW)iv*)rf*r
\Ja 1

and

K-il + I« J = (2O0)1/2 max |/(x)|
aSá x^b

(recall that Í20=J* a»(x) i/x), it follows from the theorem of M. Riesz-

Thorin that, for any t e (0, 1),

i\an.rn+t) + K|2/u+,))u+i,/2

= (2O0)í/2(     |/(x)|2/,1-"co(x)ííx]
(7) .   I   Cb ... \(l-i)/2
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From this, we infer the following result:

Theorem 3.    Let — oo<a<b< + oo, 2<s< oo, and let £,, £2t • • • , £„

be the zeros of

foz) = z« + b^z-1 + ■■■ = (\lqnyrn(z) + an_xTn.xiz) + ■■■.

Then

s/U-i)        I     1      JL \s/(s-l)\(s-l)/s

\q,J w„-u=,i

<i2Çloy-2»2°(Jjfix)\scoix)dxJS
(8)

b \<l-¡)/2

Proof. Without changing the value of the right-hand side of (8),

we can assume that Im £fr=0 for k=\, 2, ■ ■ ■ , n. In the present case

an=llq„ and we have, from (4), (qtlq„) + an^xqn_x= ~2Li £*, and

consequently

|fl,i_1| = |Ima„_1|=-L2lIm^l-
Qn-lk=l

Now, using (7) we get

K. \2/(l+f> /     1 n \2/(l+m (1+0/2

7)    +tl|Imy)    )

= (2í20)'/2(Jj/W|2/,1-,)W(x)í/x|
a

for any 1 e (0, 1). This is inequality (8) with t = (s—2)¡2.

6. In a similar way, the Hausdorff-Young inequality (see [4, p. 247])

can be used to prove inequalities like (8) for lSsS2. Now we require

that ^„(x)! be bounded uniformly with respect to « and x in the orthog-

onality interval. Consider for example the orthonormalized Tchebycheff

polynomials of the first kind,forwhich|vF„(x)|^(2/77)1/2for« = 0, 1, 2, ■ • •

and — l_x_l. Then the Hausdorff-Young inequality implies that, for

the polynomial (2),

/">\<2-s)/2s/   f+1 U/s

(\an_x\^-l) + \anr^r-^ S ^j ( J i |/(x)f (1 - x2)-,/2 dxj

for lSsS2. The following result follows from this in the same manner

as (8) follows from (7).
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Theorem 4. Let £l5 &,•••,£„ (n^2) be the zeros of f(z)=zn +

bn-xzn~1 + - • -+b0. Then, for lSsS2,

(„WÍ?1-"^-» + (2(2-"> 2 limy
\ \ k=i

S^+)f(xW(l-x2)-1/2dxJS.
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