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ESTIMATES FOR THE IMAGINARY PARTS
OF THE ZEROS OF A POLYNOMIAL

ANDRE GIROUX

ABSTRACT. Estimates for the imaginary parts of the zeros of
a polynomial are obtained as a function of its L* norm on an
interval with respect to an arbitrary weight. The resulting inequality
is sharp. Orthogonal polynomials with respect to the given weight
are used as the main tool. Simple consequences are deduced and
L7 norms are also considered.

1. Some twenty years ago, P. Turan [9], [10] started the study of
the location of the zeros of a polynomial given its development in terms
of a set of polynomials orthogonal on an interval of the real axis. This
turned out to be specially useful for dealing with the imaginary parts of
the zeros and was carried further by other people, notably by W. Specht
[5], [6], [7], [8]. It is the purpose of this note to establish some results
of this type; they are refinements of inequalities due to Specht.

2. Let w(x) be a nonnegative function on an interval (a, b) such that
all the integrals

b
Qm =f X""w(x)dx (m=0»192,)

exist and Q,>0. For m=0,1,2, -, let
Vu(2) = guz™ + gmz™ P+ 0, 4, >0

be polynomials orthonormal on (a, b) with respect to the weight function
w(x). Any polynomial of degree n,

)] @) =by+bz+ - +b,:"
can be expanded in terms of the orthonormal polynomials ¥',,(z):

)] fle) = a,Yo(2) + a¥,(2) + - - + a,¥,(2).
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It was proved by Specht [S, p. 363] that all the zeros of f(z) lie in the strip

n—1
[Imz] < ﬂﬂﬂ( >

qn k=0

We prove the following theorem which sharpens this result.

a

a 2)1/2
n

a

THEOREM 1. Let {;, {5, -+, L, be the zeros of the polynomial (2).

Then
n n—1 2\1/2
. 9n— a
® Sim i = 223 | )
k=1 9n \k=0!0ay
with equality if and only if ay=a,=- - -=a,_,=0 and Re(a,_,/a,)=0.

ProoF. We start with the identity

Z |a* = f £ (x) dx = || fII%.

k=0

In particular, we have |a,_;|*+|a,|>*<| f]|2. Now

f()= anqnlkt_[ (z—=8)= anq”(z" —(é {k)z"—l 4 )

and

@) =2 a¥u2) = 0,4,2" + (0,9} + 510z + 77,
so that k=0
4 anq: +a, 19,0 = _anqnz gk

k=1

It is sufficient to prove the theorem when a,=1. In that case, since g is
real, we have Im a,_,=—(¢,/¢,_1) Dx-1 Im {,. Hence

ZIka

k=1

=[Ima, 4| = la,l S (f1° = D'

qn—l
so that

= 1%

Zlm {k

k=1

4 ()

Let us apply this result to the polynomial g(z)=f(2)T, (z—Z,)/(z—{,)
where the zeros {, appearing in the product are precisely those for which
Im {,<O0. Since || f]|=lgll, we get

L+ (q) (Zum ) = e
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which is the statement of the theorem (when a,=1). The proof shows
that equality will hold in (3) if and only if ay=a,=" - -=a,_,=0, a,_,/a,
is purely imaginary and the zeros {;, {,, -, {, of f(z) are either all
above or all below the real axis. It is a remarkable fact (see [3, p. 21])
that the zeros of f(z)=V,(z)+ic¥,_,(z) satisfy this last condition for
any real number c.

3. From (3), we get the following result for the zeros of the derivative

of f(z):

COROLLARY 1. Let &, &, - -, &,_; be the zeros of the derivative of the
polynomial (2). Then
2)1/2

n—=1 n—1 qn n—=1

mé| = — ’_(
Igl § n qn kgo

with equality if and only if f(2) is a multiple of the polynomial ¥, (z)+

ic¥,_,(z) with c real.

ay

an

Indeed, it is known (see [1, p. 264]) that
——Sim i <23 m g,
n—1;5 T nea
equality taking place precisely when all the zeros of f(z) are on one side

of the real axis.
Another consequence of Theorem 1 is the following

COROLLARY 2. There is at least one zero of the polynomial (2) in the

strip
2)1/ 2

) |Im z| <1‘M("§1
T n g, \io

It is easy to see that unless f(z)=a,¥,(z), there is strict inequality in

(5) for n=2. In fact, suppose that for some real number ¢, we had

ax

a,

P() = ¥2) + ie¥,a(2) = 0, ] [ G = (e + i6)
with «;, «,, - -+, «, and g real. Then all the zeros of the polynomial

0(2) = P(z + ip)

would be real. There would therefore exist a real number x, such that
Q" 1(xy)=0. This would imply that 0=8¢,+cq,_,.

On the other hand, since the coefficient of z*~! in Q(z) would be real,
we would also get 0=nfg,+cq,_,. Hence f=c=0.
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Corollary 2 is equivalent to the following fact; consider all polynomials
of the form (1) such that [} | f(x)|2w(x) dx=M?; then, if f(z) does not
vanish in the strip |Im z| K, we have

bal = g.M|(1 + (nq,K]|g,_)")"

4. Let n,<n,<*--<n, be the zeros of ¥, (z), and let d,,({) denote
the distance of the point { from the interval [#,, ,,] which is the convex
hull of the zeros of ¥',,,(2). It has been proved by Specht that if {;, {,, - - -,
{,, are the zeros of the polynomial (2), then

n 1 2 1 n—1
> (qk_l )+ du8)) = ~ g

We can easily deduce a comparable inequality from Theorem 1.

THEOREM 2. Let {y, (s, -+, L, be the zeros of the polynomial (2).
Then

n q”_ n—1 a, |2 1/2
© > a4 s2=2(5 | )
k=1 n “k=0 n
with equality if and only if ay=a,=" - -=a,_,=0 and Re(a,_,/a,)=0.
PrROOF. Let

@ =aa]le-
where =
=0 if n, < Re § = s
=0, + i|G —n, if Rel >,
=+ il —ml ifRef <y,
for k=1, 2, - - -, n. Then, by virtue of Theorem 1, we have

2 du) = 2 IIm &1 = (11, @na /) *1F = laal*),

k=1 k=1
and it remains only to show that || f*||<|| f||. This can be done by using
the Gauss quadrature formula with nodes at the points 7, (see for example

[2, p. 320]):

be(x)w(x) dx = i Hy oF(n) + (1gDFEC2m)!,
a k=1

where 7 is some point in (a, b), and the H, , (.the Christoffel numbers)
are all positive. In our case |f(x)|? and |f*(x)|*> are both polynomials
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of degree 2n in x with their (2n)th derivative equal to (2r)!|a,|?q%. More-
over, we have | f*(n,)| =|f(n)| for k=1,2, - -, n. Therefore

[Pk =fb|f*‘()€)l2 w(x) dx = En: Hye o |00 + la,l?
a k=1

< S H o lf O + lagl = f I w(x) dx = [f.

k=1
Equality will hold in (6) if and only if f*(z) is of the form a,¥ ,(z)+
ap ¥, ,(z) with Re(ar_,/a,)=0 and | f*|=|f|. Obviously the last
requirement implies that f *(z)=f(z). This completes the proof of Theorem
2

Incidentally, this proof yields the following corollary.

COROLLARY 3. Let

JG) = (x = x)(x — x5) = -+ (x — x,),
g(x) = (x — y)(x — yo) = (x — yn_1),
with x, <p1<x, <"+ *<y,_1<X,. Then, for any real number c, the zeros of

the polynomial h(x)=f(x)+icg(x) are all in the half strip Im 220, x;=
Re z=x,, or all in the conjugate half strip.

Indeed, f(x) and g(x) are orthogonal on an interval (a, b) containing
(x1, x,) with respect to an appropriate weight function and the above
reasoning applies.

5. It should be noted that other inequalities relating the expressions
SiaIm g and (2 | f(x)|Pw(x) dx)"'® can be deduced from the theorem
of M. Riesz-Thorin (see [11, p. 95]). We now assume that the interval
(a, b) is bounded. Let f(z) be a polynomial of the form (2). Then using the
inequalities

(lapal® + la,)" = (Lblf(x)l2 w(x) dX)”2

and
@l + @] = (2Q0)""* max | f(x)|
asSz=d
(recall that Q=3 w(x) dx), it follows from the theorem of M. Riesz-
Thorin that, for any ¢ € (0, 1),

(la 1l2/(1+t)+ Ia I2/(1+t))(l+t)/2
n— n

1-t)/2

Q)

= cany( f 0 ) dx)
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From this, we infer the following result:

THEOREM 3. Let — 0<a<b<+ o0, 2<s< oo, and let {1, {5, -+, L,
be the zeros of

f(Z) = zn + bn—lzn_1 + = (]/qn)‘}j.n(z) + an—qun—l(z) + Tt
Then
1 s/(s—1) 1 n s/(s—1)} (s—1)/s
G+ (o2
(8) qn qn— k=1

= 209" f @ 00 d)

Proor. Without changing the value of the right-hand side of (8),
we can assume that Im (=0 for k=1,2,---,n. In the present case
a,=l1/g, and we have, from (4), (¢g%/9.)+ap_19n-1=—>r=1 {» and
consequently

1 n
@l Z 1Ima, | = ——> [Im .

dn—11=1

Now, using (7) we get

1 2/(1+t) 1 & 2/(1+t)) (1+¢)/2
G G mal )

q, 9n-1k=1
1—-t)/2

b (
= 0o ([ 10 i) )
for any ¢ € (0, 1). This is inequality (8) with t=(s—2)/2.

6. In a similar way, the Hausdorff-Young inequality (see [4, p. 247])
can be used to prove inequalities like (8) for 1 =s5=2. Now we require
that |'¥,(x)| be bounded uniformly with respect to n and x in the orthog-
onality interval. Consider for example the orthonormalized Tchebycheff
polynomials of the first kind, for which |V, (x)| = (2/=)/2forn=0, 1,2, - -
and —1=x=1. Then the Hausdorff-Young inequality implies that, for
the polynomial (2),

(2—s)/2 1 1/
(Ian_lls/(s—-l) + Ian|s/(s—l))(s—-1)/s é (_2_) s s(J\}— If(x)ls (1 _ x2)_1/2 dx) s
. -1

for 1=s5s=2. The following result follows from this in the same manner
as (8) follows from (7).
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THEOREM 4. Let {1, (o, -, L, (n=2) be the zeros of f(z)=z"+
b,_12" 1+ - -+by. Then, for | Ss=<2,

n 8/(s—1)\(s—1)/s
(ﬂ_/z)l/s(z(l—n)s/(s—l) + (2(2'”) Z |Im {k|) )

k=1

= [Tirera - e a)”
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