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RELATIVE  SIZE  OF  THE  SHILOV  BOUNDARY

.     OF A  FUNCTION  ALGEBRA

WILLIAM   R.   ZAME

Abstract. A notion of size for subsets of the spectrum of a

function algebra is described, relative to which each open subset of

the Shilov boundary has the same size as the spectrum.

Let A be a function algebra; denote its spectrum (space of nonzero,

continuous, complex-valued hotnomorphisms, with the weak*-topology)

by T,A, and its Shilov boundary by FA. In a topological sense, TA may

be much smaller than ~^A; for instance it is easy to construct function

algebras for which YA is zero-dimensional, while the dimension of ~LA

is as large as we please (see Stout [8, p. 372]). In this note we describe

another natural notion of size, an analytic notion derived from the theory

of several complex variables, relative to which YA and £¿ have precisely

the same size. This generalizes and simplifies some of the recent results

of Huckleberry and Stoll [3]. The proof uses techniques similar to the

function algebra techniques in [3].

We will make use of the /14iolomorphic functions introduced by Rickart

[4], [5], [6], which may be defined by transfinite induction as follows:

Let A0=A, and assume that the class Av has been defined for all ordinal

numbers v<p. A function/defined on a subset E of ~LA will belong to the

class A^ if for each x 6 £ there is a compact neighborhood K of x, such

that/)(ATi£) is the uniform limit of functions which are defined on KnE

and belong to classes Av for v<p. We say that a function h defined on a

subset E of SA is ^4-holomorphic if it is an element of the class A^ for some

ordinal number p and denote the collection of such functions by Jt?A(E);

we refer to Rickart [6] for general information about /1-holomorphic

functions (and to Stout [8] for general facts concerning function algebras).

The fundamental result we use is the following

Theorem. Let A be a function algebra with spectrum HA and Shilov

boundary TA. Then ^A(^A) is a function algebra with spectrum XA

and Shilov boundary TA.
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If Í2 is an open subset of HA, then by an ^-holomorphic variety in Í2

we mean a closed subset V of Q such that for each xeV, there are an

open set Q containing x and a (not necessarily finite) family ^r^^fA(Q)

for which VC\Q = {y e Q:foy) = 0 for all fe&}. In analogy with the
usual notion of thinness in several complex variables (see e.g. Gunning

and Rossi [2, p. 19]) we say that a subset F of I,A is /1-thin if there is a

sequence Vx, V2 ■ ■ • of /1-holomorphic varieties defined in open sets

Clx> Í22 • • • respectively, such that T<= \J°°=X V¡, while \JfLi V* has no inter-

ior in 2¿. Our result is then as follows.

Theorem. If A is a function algebra with spectrum Y>A and Shilov

boundary YA, then no relatively open subset of YA is A-thin in T,A.

In order to establish the theorem, we will use a slight modification of a

result of Glicksberg [1]; the proof is similar to the one in [3].

Lemma. Let B be a function algebra. If U is a nonempty relatively open

subset ofYB, then there is an open subset U' ofoLBfor which

0 ^ U' r\YB<^ U

and f\W=0 for each f e B having the property that f\U=0.

Proof. Since U is relatively open, it contains a strong boundary point,

x0 say. We can find a function geB such that g(x0)=||g|| = l, while

\g(y)\<l for y e(YB-U). Set *=max{\g(y)\:ye(YB-U)}, U' = {xeZB:

\g(x)\>o.}. Then W is certainly open, x0 e (U'nYB) and (U'nYB)^ U.

Now letfe B such thatf\U=0. If a^O, then for every positive integer

n, set hn = oi~ngnf It is easy to see that \hn(x)\S\fn(x)\ for each x e YB,

so that ||/7„||^||/||. Ifxe V then |g(x)|>aand

|/(x)| = a» \hn(x)\ \gix)\-» - 0

as n->oo; i.e. /(x) = 0. Finally, if a=0, then fg(x)=0 for each x e YB,

so that/g=0, and again/|i/' = 0, which completes the proof.

Proof of the theorem. Let Vx, V2 ■ ■ ■ be a sequence of /1-holomor-

phic varieties in open sets Qx, Í22 ■ • • such that U¿^i V% contains a relatively

open subset of YA; we show that \J?Li V¡ has interior in T,A. Observe

first that the Baire category theorem implies that one of these v4-holomor-

phic varieties, say Vx, contains a nonempty relatively open set UX<^YA.

Let Xj e Ux; there are an open set Q containing x and a family¿f <^ JÍ?A(Q)

such that gnr^c ux and VxnQ = {y eQ:f(y)=0 for all/e3F}. We can

choose a compact, ^-convex neighborhood K of x, with K<= Q. Let A'

be the uniform completion of A\K; then A' is a function algebra, H.A. = K,

and Rossi's local maximum modulus principle [7] implies that YA.<^

(A"nr^)u3Ar, where dK denotes the topological boundary of K in 24.
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Set B=JfA.(K); then S is a function algebra, ZB=K, YB = YA.<=

(KnYA)VdK, and (h\K)eB for each h e J^A(Q). Since K is a neigh-

borhood of xx, there is a relatively open subset U of YB such that Xj e U,

U^Qr\YA<= Ux. The Lemma now provides an open subset U' of K

which contains xx such that //|t/' = 0 for each h e L¥\K); thus Vx contains

an open subset of E¿, as desired.

To derive the Huckleberry-Stoll result from the above, let X be a com-

pact polynomially convex subset of CN and let P(X) be the uniform

completion on X of the polynomials.

Corollary (Huckleberry-Stoll [3]). If Vx, V2 ■ ■ ■ is a sequence

of varieties in open subsets of CN, and US=i Vj contains a relatively open

subset ofYPlX), then \Jf=x V¡ contains a relatively open subset of X.

Proof. Observe that if £2 is open in CA and/is holomorphic on Í2,

then/|(OnX) is P(X)-holomorphic; thus each of VXC\X, V2C\X, • • • is a

^(^-holomorphic variety. The Corollary now follows immediately.
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