RELATIVE SIZE OF THE SHILOV BOUNDARY OF A FUNCTION ALGEBRA

WILLIAM R. ZAME

ABSTRACT. A notion of size for subsets of the spectrum of a function algebra is described, relative to which each open subset of the Shilov boundary has the same size as the spectrum.

Let A be a function algebra; denote its spectrum (space of nonzero, continuous, complex-valued homomorphisms, with the weak*-topology) by Σ_A , and its Shilov boundary by Γ_A . In a topological sense, Γ_A may be much smaller than Σ_A ; for instance it is easy to construct function algebras for which Γ_A is zero-dimensional, while the dimension of Σ_A is as large as we please (see Stout [8, p. 372]). In this note we describe another natural notion of size, an analytic notion derived from the theory of several complex variables, relative to which Γ_A and Σ_A have precisely the same size. This generalizes and simplifies some of the recent results of Huckleberry and Stoll [3]. The proof uses techniques similar to the function algebra techniques in [3].

We will make use of the A-holomorphic functions introduced by Rickart [4], [5], [6], which may be defined by transfinite induction as follows: Let $A_0 = A$, and assume that the class A_v has been defined for all ordinal numbers $v < \mu$. A function f defined on a subset E of Σ_A will belong to the class A_μ if for each $x \in E$ there is a compact neighborhood K of x, such that $f \mid (K \cap E)$ is the uniform limit of functions which are defined on $K \cap E$ and belong to classes A_v for $v < \mu$. We say that a function h defined on a subset E of Σ_A is A-holomorphic if it is an element of the class A_μ for some ordinal number μ and denote the collection of such functions by $\mathcal{H}_A(E)$; we refer to Rickart [6] for general information about A-holomorphic functions (and to Stout [8] for general facts concerning function algebras). The fundamental result we use is the following

Theorem. Let A be a function algebra with spectrum Σ_A and Shilov boundary Γ_A . Then $\mathcal{H}_A(\Sigma_A)$ is a function algebra with spectrum Σ_A and Shilov boundary Γ_A .

Received by the editors May 1, 1973.

AMS (MOS) subject classifications (1970). Primary 46J10, 46J20; Secondary 32E25. Key words and phrases. Spectrum, Shilov boundary, A-holomorphic function, thin sets.

If Ω is an open subset of Σ_A , then by an A-holomorphic variety in Ω we mean a closed subset V of Ω such that for each $x \in V$, there are an open set Q containing x and a (not necessarily finite) family $\mathscr{F} \subset \mathscr{H}_A(Q)$ for which $V \cap Q = \{y \in Q: f(y) = 0 \text{ for all } f \in \mathscr{F}\}$. In analogy with the usual notion of thinness in several complex variables (see e.g. Gunning and Rossi [2, p. 19]) we say that a subset T of Σ_A is A-thin if there is a sequence $V_1, V_2 \cdots$ of A-holomorphic varieties defined in open sets $\Omega_1, \Omega_2 \cdots$ respectively, such that $T \subset \bigcup_{i=1}^{\infty} V_i$, while $\bigcup_{i=1}^{\infty} V_i$ has no interior in Σ_A . Our result is then as follows.

Theorem. If A is a function algebra with spectrum Σ_A and Shilov boundary Γ_A , then no relatively open subset of Γ_A is A-thin in Σ_A .

In order to establish the theorem, we will use a slight modification of a result of Glicksberg [1]; the proof is similar to the one in [3].

Lemma. Let B be a function algebra. If U is a nonempty relatively open subset of Γ_B , then there is an open subset U' of Σ_B for which

$$\varnothing \neq U' \cap \Gamma_R \subseteq U$$

and $f|U'\equiv 0$ for each $f\in B$ having the property that $f|U\equiv 0$.

PROOF. Since U is relatively open, it contains a strong boundary point, x_0 say. We can find a function $g \in B$ such that $g(x_0) = ||g|| = 1$, while |g(y)| < 1 for $y \in (\Gamma_B - U)$. Set $\alpha = \max\{|g(y)| : y \in (\Gamma_B - U)\}$, $U' = \{x \in \Sigma_B : |g(x)| > \alpha\}$. Then U' is certainly open, $x_0 \in (U' \cap \Gamma_B)$ and $(U' \cap \Gamma_B) \subset U$.

Now let $f \in B$ such that $f | U \equiv 0$. If $\alpha \neq 0$, then for every positive integer n, set $h_n = \alpha^{-n} g^n f$. It is easy to see that $|h_n(x)| \leq |f_n(x)|$ for each $x \in \Gamma_B$, so that $||h_n|| \leq ||f||$. If $x \in U'$ then $|g(x)| > \alpha$ and

$$|f(x)| = \alpha^n |h_n(x)| |g(x)|^{-n} \rightarrow 0$$

as $n\to\infty$; i.e. f(x)=0. Finally, if $\alpha=0$, then fg(x)=0 for each $x\in\Gamma_B$, so that $fg\equiv0$, and again $f|U'\equiv0$, which completes the proof.

PROOF OF THE THEOREM. Let $V_1, V_2 \cdots$ be a sequence of A-holomorphic varieties in open sets $\Omega_1, \Omega_2 \cdots$ such that $\bigcup_{i=1}^\infty V_i$ contains a relatively open subset of Γ_A ; we show that $\bigcup_{i=1}^\infty V_i$ has interior in Σ_A . Observe first that the Baire category theorem implies that one of these A-holomorphic varieties, say V_1 , contains a nonempty relatively open set $U_1 \subset \Gamma_A$. Let $x_1 \in U_1$; there are an open set Q containing X and a family $\mathscr{F} \subset \mathscr{H}_A(Q)$ such that $Q \cap \Gamma_A \subset U_1$ and $V_1 \cap Q = \{y \in Q: f(y) = 0 \text{ for all } f \in \mathscr{F}\}$. We can choose a compact, A-convex neighborhood K of X_1 with $K \subset Q$. Let A' be the uniform completion of $A \mid K$; then A' is a function algebra, $\Sigma_{A'} = K$, and Rossi's local maximum modulus principle [7] implies that $\Gamma_{A'} \subset (K \cap \Gamma_A) \cup \partial K$, where ∂K denotes the topological boundary of K in Σ_A .

Set $B=\mathcal{H}_{A'}(K)$; then B is a function algebra, $\Sigma_B=K$, $\Gamma_B=\Gamma_{A'}\subset (K\cap\Gamma_A)\cup\partial K$, and $(h|K)\in B$ for each $h\in\mathcal{H}_A(Q)$. Since K is a neighborhood of x_1 , there is a relatively open subset U of Γ_B such that $x_1\in U$, $U\subset Q\cap\Gamma_A\subset U_1$. The Lemma now provides an open subset U' of K which contains x_1 such that $h|U'\equiv 0$ for each $h\in (\mathcal{F}|K)$; thus V_1 contains an open subset of Σ_A , as desired.

To derive the Huckleberry-Stoll result from the above, let X be a compact polynomially convex subset of \mathbb{C}^N and let P(X) be the uniform completion on X of the polynomials.

COROLLARY (HUCKLEBERRY-STOLL [3]). If $V_1, V_2 \cdots$ is a sequence of varieties in open subsets of \mathbb{C}^N , and $\bigcup_{j=1}^{\infty} V_j$ contains a relatively open subset of $\Gamma_{P(X)}$, then $\bigcup_{j=1}^{\infty} V_j$ contains a relatively open subset of X.

PROOF. Observe that if Ω is open in C^N and f is holomorphic on Ω , then $f|(\Omega \cap X)$ is P(X)-holomorphic; thus each of $V_1 \cap X$, $V_2 \cap X$, \cdots is a P(X)-holomorphic variety. The Corollary now follows immediately.

REFERENCES

- 1. I. Glicksberg, Maximal algebras and a theorem of Radó, Pacific J. Math. 14 (1964), 919-941. MR 29 #6337.
- 2. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1965. MR 31 #4927.
- 3. A. Huckleberry and W. Stoll, On the thickness of the Shilov boundary, Math. Ann. (to appear).
- 4. C. E. Rickart, Analytic phenomena in general function algebras, Pacific J. Math. 18 (1966), 361-377. MR 33 6438.
- 5. ——, The maximal ideal space of functions locally approximable in a function algebra, Proc. Amer. Math. Soc. 17 (1966), 1320-1326. MR 34 #1876.
- 6. —, Holomorphic convexity for general function algebras, Canad. J. Math. 20 (1968), 272-290. MR 37 #3362.
- 7. H. Rossi, The local maximum modulus principle, Ann. of Math. (2) 72 (1960), 1-11. MR 22 #8317.
 - 8. E. L. Stout, The theory of uniform algebras, Bogden and Quigley, 1971.

DEPARTMENT OF MATHEMATICS, SUNY AT BUFFALO, AMHERST, NEW YORK 14226