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CLIFFORD  TRANSLATIONS  OF  SYMMETRIC  SPACES

V. ozols

Abstract. A direct proof, not using the classification of

symmetric spaces, is given for the following characterization of

Clifford translations in a symmetric space M: An isometry^ is a

Clifford translation of M if and only if the centralizer Z(g) of g

in the isometry group of M is transitive on M. The proof uses a

geodesic characterization of Clifford translations, and the

subgroups Tih) of J. de Siebenthal.

Introduction. A Clifford translation of a metric space is an isometry

which moves each point the same distance as every other point. These

isometries have been studied in various special cases by a number of

people, including W. K. Clifford, G. Vincent, J. A. Wolf, H. Freudenthal,

and J. Tits. The most complete results are due to J. A. Wolf, who essentially

classified the finite groups of Clifford translations of compact simply

connected symmetric spaces. J. Tits showed that there are no nontrivial

Clifford translations of symmetric spaces of noncompact type; and it is

easy to see that the Clifford translations of Euclidean space are just the

ordinary translations.

One of the main results of the above work is that if M is any simply

connected symmetric space and Y is a properly discontinuous group of

isometries of M, then a necessary and sufficient condition for M\Y to

be homogeneous is that Y consists of Clifford translations. An equivalent

statement is that Y consists of Clifford translations if and only if its cen-

tralizer in the isometry group of M is transitive on M.

All the methods used so far have involved a case by case check of the

symmetric spaces (of compact type) in Cartan's list, with each case

requiring different techniques.

In this paper we give a direct proof of the above result for cyclic groups

T acting on symmetric spaces of compact type. The proof relies on a

geodesic characterization of Clifford translations (Theorem 1.6), together

with extensions of some arguments in [2], and makes no use of the classi-

fication. (The results in [2] give the same answer for symmetric spaces

Received by the editors July 16, 1973.

AMS (MOS) subject classifications (1970). Primary 53C35, 53C30; Secondary

53C70.
Key words and phrases. Clifford translation, isometry, symmetric space, homo-

geneous space.
(£, American Mathematical Society 1974

169



170 V.   OZOLS [May

of noncompact type, but they are vacuous in view of the theorems of

Tits.) The method does not seem to work for noncyclic groups.

(1) A geodesic characterization of Clifford translations. Let M be a

complete connected C°° Riemannian manifold with Riemannian inner

product (■••,•■•) and distance p. lffo.M->-M is any function, then the

displacement function ô/.M^-R of / is given by ôf(x) = p(x,f(x)) for

all .y e M.

(1.1) Definition. If/:AF->-M is a function and y :R->-M is a C" curve

parametrized proportional to arc-length, then f preserves y if there is a

number a e R such that foy(t)) = y(t+a) for all t.

The following lemma is easy to verify.

(1.2) Lemma. Let fo.M-*M be an isometry, y:R—>-M a geodesic pa-

rameterized proportional to arc-length, and a e R a constant. The following

are equivalent:

ii)foyit))=yit+a)forallt;
(ii) fo(y'(t)) = y'(t + a)for some t;

(iii) fo(y'(t)L) = y'(t + ay and (fo(y'(t)), y'(t + a))^0for some t.

(1.3) Definition.    Let/: A/—* A/ be an isometry and x e M. Then

(i) / satisfies iPx) if there is at least one minimizing geodesic y from

x to/(.\) which is preserved by/.

(ii) Pres(/) = {.v]/satisfies iPx)}.

Note. In [2] we investigated the set Crit(/) of critical points of the func-

tion xh-*ô%x) under the assumption that / has small displacement (i.e.

fox) is not in the cut locus of x for any x e M). We showed there that

Crit(/) is precisely the set of x for which / satisfies (Px). The small dis-

placement condition is too strong for many situations of interest, and the

more natural object geometrically is Pres(/). It has meaning even in the

generality of the G-spaces of Busemann.

(1.4) Proposition.    Let f, h :M^ M be isometries. Then

(i) f satisfies (Phx) if and only if hrxfh satisfies (Px);

(ii) hx 6 Pres(/) if and only if x e ?res(h~1fh);

(iii) h ■ Pres(/) = Pres(/////-1).

Proof.    See [2]

(1.5) Definition. An isometry f:M->-M is a Clifford translation

if ôf:x\—>p(x,f(x)) is constant on M.

(This is called a Clifford-Wolf isometry in [1].)

(1.6) Theorem. Let f: M-+M be an isometry. The following are equiv-

alent:

(i) fis a Clifford translation;
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(ii) for each x e M there is a minimizing geodesic y from x to fox)

preserved by f (i.e. Pres(/) = M);

(iii) for each x e M and every minimizing geodesic y from x to fox),

f preserves y.

Proof. Suppose (ii) holds, x e M, and y is a minimizing geodesic

from x to/(a-) preserved by/ Assume y is parameterized by arc-length,

and let a = p(x,/(*)). Let/3>0, and Q:[0,a]x( — b, b)-+M a Covariation

of y such that:

(1) the curve th->Q(t, 0) is the curve y;

(ii)f(Q(0,s)) = Q(a,s) for alls;
(iii) each curve th^Qs(t) = Q(t, s) is parameterized proportional to

arc-length. Let X=Q^d/ds, Y=Qitd\dt, and L(Qs)=¡l(Y, Y)1'2 dt.
The formula for first variation of arc-length says:

id¡ds\s^)LiQs) = (XyM, Yy((l)) - (Xm, Ym) - [\x, VFY> dt.
Jo

Vr F=0 since y is a geodesic; and since/preserves y,fo Yyio)=foy'(0) =

y(a)= YyM. Therefore,

(Xy{a),   Val)  =  (f*^y(0)if*^y(0))  =  (^"ytOb  ^y(O))

so (dldsl=0)L(Qs)=0. For each s e (-b, b), we have L(QA^Ôf(Q(0, s))

and LiQ0)=Liy) = àfiQiO, 0)) so L(Qs)-L(Qo)^ôf(Q(0, s))-ôf(Q(0, 0)).
Since lims_0(l/5)(F(ös)-F(öo))=0 it follows that for each e>0 there is

<5>0 such that if 0<s<<5 then

(l/sXaXQ(0, s)) - 0X0(0, 0))) S (l/s)(L(Qs) - L(ßo)) < s.

By replacing Q by Q(>, s)=Q(t, —s) we see that

(1/M)(<5,(Ô(0, s)) - ôf(Q(0, 0))) < e    for all 0 < \s\ < à.

Now assume the curves si—>£)(0, s), st-^>Q(a, s) are geodesies parameter-

ized by arc-length, so that \s\ = p(Q(0,0), Q(0, s)) for small |s|. Then

for each geodesic v emanating from x and for each e>0, there is á>0

such that if y lies on v and p(x,y)<d, then ôf(y) — ôf(x)<e ■ p(x,y).

Since ô depends only on x, v, and e, we can restrict to a suitable neigh-

borhood C of .v and obtain <5>0 which depends only on s. Thus, for each

£>0 there is ó>0 such that if x,yeC and p(x,y)<ô, then ôf(y) —

ôf(x)<e ■ p(x,y). By symmetry we get \ôf(y) — ôf(x)\<e • p(x,y), so

ôf has zero derivative in C. Since M is connected and covered by the neigh-

borhoods C, èf is constant on M.

If/is a Clifford translation, then it follows easily that (djds\s=0)L(QA = 0

for every variation Q satisfying (i), (ii), (iii). Then (Xfix), y'(a))=(Xx, y'(0))



172 V.  OZOLS [May

so if Xx±y'(0) then Xf(x)±y'(a). This proves that /*(y'(0)1) = y'(o)1.

If X= Y the first variation formula implies that 0<(À\ Y){0M = {X, Y){n 0),

so (iii) of Lemma 1.2 holds. Then / preserves y, proving (iii). Since (iii)

implies (ii) the proof is complete.    Q.E.D.

(2) Clifford translations of symmetric spaces. Assume now that M is

a normal Riemannian homogeneous space, G=I(M) is its full isometry

group, and K=IX(M) is the isotropy subgroup of G at x e M. We identify

x with K. Let g, f be their Lie algebras, and g = f + m an ad(A)-invariant

splitting of g. Provide m with an ad(A)-invariant inner product corre-

sponding to the Riemannian inner product (■••,-••) on TXM via the usual

identification TXM<->m. Normality of M means the geodesies emanating

from x have the form ri—>(exp / Y) ■ x with Y em. If M is a symmetric

space and sx e K is the geodesic symmetry at x then the splitting g = i + m

is assumed to be into the ± 1 eigenspaces of the involution a=ad(sx) : g—»-g.

a will also denote the involution o = ad(sx):G~^-G.

(2.1) Proposition. Let M be a normal Riemannian homogeneous

space and g e I(M). Then:

(i) g satisfies (Px) if and only ifg=(exp Y)k, where Y e m is such that

tt—>(exp tY) • x is a minimizing geodesic from x to gx, and k e K is such

that ad(A-) Y= Y.

(ii) Pres(^) = {//-I.v|//g/rI = (exp Yh)k„ as in (i)}.

Proof.    See [2].

Suppose now that M is a compact symmetric space, x e M is fixed,

and a=ad(sx) is the involution of G and g. Note that ad(k) = ad(ok) for

all k e K, although we need not have ok = k.

Let Aut(g) be the Lie group of all automorphisms of g, and aut(g)

its Lie algebra. The involution a of g induces an involution 5 of Aut(g)

(and aut(g)) by: 5p = o o p o a for all p e Aut(g). The subgroup ad(G)<=

Aut(g) is rr-invariant and ad(A) is pointwise fixed by ö.

If G is any compact Lie group (not assumed connected), it has certain

abelian subgroups S such that:

(i) there is g e S, called a generator, whose powers are dense in 5.

(ii) S has finite index in its normalizer in G.

These groups are obtained by the following construction (see, for

example, [3] or [4]): Take any g e G, and let S° be a maximal torus of

the centralizer Z(g) of g in G. Then the required group S is the one

generated by S° and g.

For C7 connected, the groups S are the maximal tori of G; but they

need not be of maximal rank nor connected if G is not connected. These

groups are denoted by F"1» in de Siebenthal [4], and they are called Cartan

subgroups by G. Segal in [3]. Current usage gives a different meaning to
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"Cartan subgroup", so we will refer to the groups 5 above as F(/l)-sub-

groups.

(2.2) Lemma. Let M be a compact symmetric space and g e I(M).

If x ( = eK) lies in Pres(g) then there is a T{h)-subgroup S of I (M) such that:

COg^s,
(ii) aS°=S (S°=identity component of S),

(iii) Sx=S°x (i.e. S has connected x-orbit).

Proof. Let g=(exp Y)k be a splitting as in (2.1), and let Z(k) be the

centralizer of Ac in I(M), and fa its Lie algebra, fa 's the +1 eigenspace of

ad(rV) acting on g, and since ad(k) = ad(ok) it follows that fa = fak=(Jh

so äj. is cr-invariant. Therefore js splits into the ±1 eigenspaces of a:

ik — Ú + ík' Evidently Ye fa. Let A^fa be a maximal abelian subspace

containing Y, and let S be a maximal abelian subspace of the centralizer

of A in i\. If X efa centralizes A + B then [X, A]=0=[X, B] so if we de-

compose X=X+ + X~ then 0=[X+, A] + [X-, A]andO=[X+, B] + [X~, B].

Therefore [X~, A] = 0 so X~ e A. Since X+ centralizes both A and B,

X+e B so XeA + B and A+B is a maximal abelian subalgebra of fa.

A+B is clearly a-invariant.

Let S°=e\p(A + B), so oS°=S°, and let S be the F(*)-subgroup of G

generated by 5° and k. Then exp Y, k, (exp Y) ■ k=g e S. The cosets of

S° in S are represented by powers of k so S • x = S° ■ x, proving the

lemma.    Q.E.D.

(2.3) Proposition. Let M be a compact symmetric space and g e I(M).

Then there is a set {gß} of generators of the T{h)-subgroups of I(M) con-

taining g such that Pres(g)c \Jß Pres(gß).

Proof. Suppose x e Pres(g) (we may assume x = eK). By Lemma

2.2 there is a F(/''-subgroup S satisfying (i), (ii), (iii). Let g=(exp Y)k

be the usual splitting of g. There is a finite set of powers ka of k such that

S=\J„ S°k". Since S is the product of S" with a finite cyclic group gener-

ated by an element // e S, and the generators of 5 include all the "products

g0h where g0 is a generator of S°, it follows that one of the components

of S has a dense set of generators of S. Say that component is S°ka. Then

there is a generator gp=ppkn of 5 with pp g S° as near e as we like. Now

S°x is a totally geodesic submanifold of M, so we can choose gp so the

unique minimizing geodesic going from x togpx lies in S°x. Then if Yß e m

is the tangent to this geodesic at x, Yß must lie in the Lie algebra of S°.

Thus, (exp Yß)x=gßx so g/i = (exp Yß)kß for some kß e K. But kßeS,

so ad(kß)Yß=Yß, proving that x e Pres^). This argument works for

all .v g Pres(g) so the proof is complete.    Q.E.D.
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(2.4) Corollary. If g is a Clifford translation then M={J<x\?res(gf),

where {ga} is a set of generators of the T{h)-subgroups {Sx} containing g.

Now assume M is symmetric of compact type.

(2.5) Proposition. If g e G generates a T^-subgroup S, then Pres(g)=

U"-i S° ' xa where {*<}*•! is a set of representatives of the components of

Pres(g).

Proof. Let xePres(g) and g = (exp Y)k the usual splitting. If

// g exp rrt is such that h~yx e Pres(g) then the F'^'-subgroup hSh'1

satisfies (ii) of Lemma 2.2. Moreover, hSh^1 is generated by hS°h~1 and

the component k e K of the splitting hgh~1 = (exp Yh)kh. Since hS°h~1 is

ff-invariant then ad(hS°h~1) is rî-invariant (and ad(kh) is ö-stable). There-

fore ad(hSh_1) is r7-invariant. Then ö[ad(hSh~1)] = ad(hSh~1) so

ad(//-!)ad S ad(h) = ad(h)ad S ad(/rx),

since ad S is also 5-invariant. Thus, ad(h2)ad S ad(h2)~1 = ad S and

ad(//2) is in the normalizer of ad S in ad G. Since the kernel of ad:G-*

Aut(g) is finite (being the centralizer of G° in G), it follows that for h

sufficiently near e, the above condition implies that h2S(h2)~1 = S. For h

near e, this means h e 5° since S has finite index in its normalizer and the

only elements of S near e lie in S°. Therefore, for all h e exp m sufficiently

near e, h_1x e Pres(g) if and only if h e S°. This argument is independent

of the point x e Pres(g) originally chosen, so S° ■ x is open in Pres(g).

Since S° • x is also closed in Pres(g) it is a component. The number of

components is finite since Pres(g) is an imbedded submanifold of a com-

pact manifold.    Q.E.D.

(2.6) Proposition. For each geG, Pres(g)=\J"=xZ°(g)- x¡, where

{.y,}™=1 is a set of representatives of the components ofPres(g), and Z°(g) is

the identity component of the centralizer of g in G.

Proof. Let {Sx} be the FU)-subgroups of G containing g. Their

identity components 5"" are the maximal tori of the compact Lie group

Z°(g), so they are all conjugate within Z°(g). Thus there are elements

haeZ°(g) such that {h^SljT1} is the set of all maximal tori in Z°ig),

where 5°o is some fixed one of them. Then {haS„,0h~x1} = {Slx} is the set of

all F'^'-subgroups containing g. Let {xJÎLi be a set of representatives of the

components of Pres(gao), where gX(¡ is a generator of the F(A)-subgroup

■V Then

Pres(g(1) = Presih^h-1) = ha Pres(gao) = Ü haS° ■ x¿;
1 = 1
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SO

Pres(g) <= U Pres(ga)
a

= U Û hjp ■ *< - IJ (U h¿5°) ■ x< c IJ z°(g) • *,.

The other inclusion is obvious.    Q.E.D.

(2.7) Corollary, g e I(M) is a Clifford translation if and only if
Z°(g) is transitive on M.

Proof. If Z°(g) is transitive then for each y e M, y = ux for some

ueZ°(g). Then p(y,gy) = p(ux,gux) = p(ux,ugx) = P(x,gx) so g has

constant displacement. Conversely, if g is a Clifford translation then

M = IJ"=1 Z°(g) ■ Xf is a finite union of closed subsets, so by the Baire

category theorem one of them is open. Thus Z°(g) has an open orbit

which is all of M since M is connected.    Q.E. D.

(2.8) Corollary. A generator of a Tih)-subgroup cannot be a Clifford

translation of a symmetric space of compact type.

Proof. If g generates a FU)-subgroup and is a Clifford translation

then Z°(g) is a ff-invariant transitive torus, implying that M is flat.    Q.E.D.

(2.9) Corollary. If Y is a cyclic group of Clifford translations acting

properly discontinuous!}' on a symmetric space of compact type then M\Y

is homogeneous.

Remark. The converse has a simple proof found for example in

[8].
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