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ON  A  MULTIPLICATION  DECOMPOSITION THEOREM
IN  A  DEDEKIND  cr-COMPLETE PARTIALLY

ORDERED  LINEAR ALGEBRA

TAEN-YU   DAI

Abstract. Suppose a Dedekind cr-complete partially ordered

linear algebra (dsc-pola) satisfies a certain multiplication decom-

position property (see definition below), then we show that this

partially ordered linear algebra actually has the same structure of a

special class of real matrix algebras, consisting of elements that can

be decomposed as diagonal part plus nilpotent part w, such that

w2=0.

A dsc-pola, denoted by A (or B) is a real linear associative algebra which

satisfies the following two conditions: (1) It is partially ordered so that it

is a directed partially ordered linear space and O^xy whenever x, y e A,

O^x, O^y. (1) It is Dedekind a-complete, i.e., if x„ e A, 0^- • •■^x2^x1,

then infix,,} exists. A dsc-pola A has the Archimedean property: If x,

y e A and nx^y for every positive integer «, then x^O. In this paper we

will assume A has a multiplicative identity 1^0. Let I={y:y^.l, and

y1^0}czA. Define Ax = \JveI {x:— y^x^y}. Then it was shown by R.

DeMarr that the multiplication of the elements in Ax is commutative, and

Ax behaves much like an algebra of real-valued functions; moreover, Ax

is a lattice and has no nonzero nilpotent. For the details of the proofs and

examples of Ax we refer to [2]. (Note in [2], instead of the term dsc-pola,

we use polac; actually they have the same meaning.) We will call Ax the

functional or diagonal part of A. Let A be a dsc-pola which has the follow-

ing multiplication decomposition property (abbreviated as MD):

MD property: If yx, y2e A, Orgj,, 0^y2, 0<u^yxy2, then there

exists uie A, 0^ui^.yi (< = 1, 2) such that u = uxu2.

It was shown as Theorem 4 in [4] that if A is commutative and has the

MD property, then A = AX. In this paper we will drop the commutativity

assumption and show the following theorem:

Main Theorem. If a dsc-pola A has the MD property, then for each

x £ A, x=d+v, where de Ax, v2 = 0, and this expression is unique (in the

sense that if x=d+v=e+u, e e Ax, u2=0, then d=e, v = u).
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Lemma 1.    For any dsc-pola B if w e B, w2 = 0 and H>2t — 1, then w^.0.

Proof. Since l+w^O, we have (l+w)"^0 or 1+«h'2ï0, for all «>0.

This means w^. — (1/«)1 for all «. By the Archimedean property we have

w^o.  n

Lemma 2. For any dsc-pola B if w^.0, w2=0, then for any O^a e Bx

(Bx is the diagonal part of B), (aw)2=(wa)2=0.

Proof.    See the remark of Theorem II. 3.6 of [2].    D

Lemma 3. If a dsc-pola B has the following property: given any 1^

x £ B, x_1 exists and x-1^ 1, then for any O^w e B, wn=0, «^2, we have

w2=0; moreover, the sum (product) of positive nilpotents is a nilpotent

(zero).

Proof.    See Theorems II. 3.1, II. 3.2 and its corollary in [2].    □

Lemma 4. For any dsc-pola B, let x e B, O^x^l, if there exists O^y

such that l^xy+yx, then x_1 exists and x_1^l.

Proof. Put z=l— x^O. By assumption we have l^xy+yx=

(l-z)y+y(l-z) or l^l+zy+yz^2y. Hence, 2y^l +z(\) + (\)z=l +z.

By induction we will show 2y^.l + ^k=xzk=hn for all «. The assertion is

clearly true for n=l. If the assertion is true for n = m, i.e., 2y^.hm, then

for n = m+l, we first observe that 2yz^.hmz, 2zy~izhm and hmz=zhm;

hence,
m+l

2y ^ 1 + yz + zy ^ 1 + \(hmz + zhm) = 1 + zhm = 1 + £ z* = hm+x.

it=i

Therefore, hn is bounded above by 2y, by Proposition 2 in [3] we see

l^h = sup{/,„} = J zk = (1 - z)-1 < 2y.    D
0

Theorem 5. Let the dsc-pola A have the MD property. If O^x e A,

then x=c + w, where O^c £ Ax, O^w and w2=0.

Proof. Put j=x+2^2. Clearly l^y2-l^y2. By the MD property

there exists zx, z2e A such that 0^zx^y, 0^z2^y and y2 — l=zxz2. Thus

1 = y(y - zù + (y - zx)z2 = (y - zx)y + zx(y - z2).

From this we see easily that

1 ^ yiy - z2) ^ y - z2 ^ 0,        1 ^ (y - zx)y ^ y - zx ^ 0.

Hence, zf^.y—lj£l, z2^y—1^1. Put a=y—zx, b=y—z2. Then l^oy^

a^.0, l^.yb^.b^.0; this means a, b, ay, yb all belong to Ax; therefore, they
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commute with each other. Now O^a + è^l =az2+yb^ay+yb^2. Thus,

1 < (a + b)y + y(a + b).

By Lemma 4 this implies (a + b)'1 exists and 0^(a+byi e Ax. Next ob-

serve that

aiya — ay) = iay)a — a2y = a(ay) — a2y = 0

and

(ya — ay)b = y(ab) — ayb = y(ba) — ayb = (yb)a — ayb

= aiyb) - ayb = 0.

Put v = (ya—ay)a. Then

v2 = (ya — ay)(a(ya — ay))a = 0,

and

(ya — ay)(a + b) = (ya — ay)a + (ya — ay)b = v + 0 = v.

Since (a+by1 exists, we have ya — ay = v(a + b)~1 or ya = ay + v(a+by1.

Now note, by l^yb, ay^.0, we have

0 2Í y(a + b) = ya + yb = yb + ay + v(a + bf1 <; 2 + v(a + by-1.

Thus, -2<-2(a+b)^v (since \^a+b^0).

By Lemma 1 we have t»^0. But from 0^y(a + b)=yb+ay + v(a+byi,

and (a+by1^, we get

y= (ay + yb)(a + bfo1 + v(a + by2 = cx + w,

where 0^cx = (ay+yb)(a+b)~1 e Au 0^w = v(a + b)~2.

By Lemma 2, w2 = 0. Finally, observe that 2(a + b)^ay+yb. Since

(a + byi>0, we obtain

2^cx = (ay + yb)(a + by1 e Ax.

Now j=x + 2 = Ci + ir or x=c + w,  where c = cx — 2^0.  The proof is

complete.    □

Corollary 6. If the dsc-pola A has the MD property and if u = uxu2—

u2ux, where ux, u2, u are as in the definition of the decomposition property,

then A = AX.

Proof. For any l<xeA, we want to show x_1^0. Choose ye A,

such that 1 ̂ x^x+1 <=y. Clearly 2^jand 1 </-1 <y*. Thus, by the MD

property and the assumption, there exists 0^zx^y, 0^z2^y such that

y2— l=zxz2=z2zx or

1 = }'(y - z¿) + (y - zx)z2 = (y - zx)y + zx(y - z2)

= y(y - zi) + (y - z2)zx.
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Put0^a=y—zx,0^b=y—z2. Then proceed as in Theorem 5. Note now

l^.ay^a^.0, l^ya^a^O, so ay, ya e Ax, hence, ya—ayeAx. This

implies v = (ya—ay)a e Ax (v as in the proof of Theorem 5). But »j2=0;

this by Corollary I. 2.5 of [2] implies v = 0. Therefore, w=»j(a-|-¿»)-2 = 0;

hence, 2^j»=c1 + h,=c1 e Ax. This means y^^O. By Proposition 3 of [3]

we see x_1^0, hence, x £ Ax, thus, A = AX.    D

Corollary 7. If A has the MD property, then for any l<_xeA, x_1

exists and x_1 <_ 1.

Proof. From Theorem 5 we see easily that if 1 Sx e A, then x=c + w,

where \<_ceAx, OSw, w2=0. Since O^c^^l, we have 0^c_1h^m', so

(c~1w)2=0. Now x = c(l -r-c_1M'), thus,

x'1 = (1 - c-iwy-1 = c1 - c^wc-1 <_ e'1 SI.  '□

Remark. The converse of the theorem in general is not true; see the

example at the end.

Corollary 8. If A has the MD property, and we A, w2 = 0, then

w=wx — w2, where 0<_wt e A, w2=0 (i=l, 2), and — vSwSv for some OS

ve A, v2 = 0.

Proof. Let w=xx—x2, 0^x¿, i=l, 2. By Theorem 5 xi=ci+wi,

where 0^c¿ e Ax, 0^w¿, w2=0, so w=(cx — c2) + (wx — w2). Squaring both

sides and using Corollary 7 and Lemma 3 we have

w2 = 0 = (cx - c2)2 + (cx - c2)(wx - w2) + (wx - w2)(cx - c2)

or

— (cx — c2)2 = (cx — c2)(wx — w2) + (wx - w2)(cx — c2).

Squaring both sides again and repeatedly using Lemma 2, Lemma 3, and

Corollary 7, we have (c, —c2)4=0. But cx — c2e Ax; by Corollary I. 2.5

of [2] we see easily that cx — c2 = 0, so that w=wx — w2. By putting v=wx+

w2, and using Lemma 3, the assertion is now clear,    fj

Remark. By the same method above, we can actually show that for

any we A, if wn = 0, «>2, then m,2=0. Furthermore, by this corollary

and Lemma 3, it is quite easy to see that the sum (product) of any two

nilpotents is a nilpotent (zero).

Now the proof of the Main Theorem is straightforward as follows:

For any xeA, x=xx—x2 = (cx+wx)—(c2+w2)=d+w, where 0^x¿ =

c¿ + H'¿, 0^c¿ e Ax, 0<_w{, w2=0 (i=l, 2), and d=cx — c2 e Ax, h=iv1 —iv2.

Note that vt,2 = 0. For the uniqueness part: Suppose x=d+w=e + u,

eeAxu2=0. Thend— e=u— w. Squaring both sides and using the remark of

Corollary 8 and Corollary I. 2.5 of [2], we see immediately that d=e and

u=w.
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Let N={w:w e A, w2=0}. From Corollary 8 and its remark we know

Nis an additive group; it is trivial to verify that A is a dsc-pola. Now we

show that A has the well-known addition decomposition property:

Theorem 9. Ifu^N, w¿^0 (/=1,2) and 0<_w<_ux + u2, then there

exists 0<w,<h¿ such that m' = w,-|-h'2._     i —    i 112

Proof. Since 0<_w=il+ux)il+u2)=l+ux+u2, by the MD property,

we have w=zxz2 where OSz^l+Ui (i*=l, 2). By Theorem 5 we obtain

easily that zi=ai+vi, where 0<_at<_l, 0^i»¿^m¿. Now

w = iax + vx)ia2 + v2) = axa2 + axv2 + vxa2.

This implies 0<_axa2Sw. Therefore, iaxa2)2 = 0. But axa2e Ax, hence,

axa2 = 0. Now by putting wx = vxa2, w2=axv2, then the assertion is clear.    □

Example 1. Let A be the real linear algebra of matrices (real entries)

of some given finite order. If A is partially ordered componentwise, then

the diagonal part Ax of A is nothing but all the diagonal matrices. If, in

particular, A consists of the matrices which have the form x=[ai;] where

at,=0 for ij£j or i$á 1, then the readers are invited to verify that A has the

MD property. Note each element in A can be written as a diagonal matrix

plus a nilpotent matrix.

Example 2. A{[1 x] :a, à are reals}. If we order A componentwise, then

A is a dsc-pola. It can be verified easily that A has no MD property, but

each element of A can be decomposed as a diagonal matrix plus a nil-

potent matrix. This means the converse of the Main Theorem is not true.
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