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ON DIRICHLET'S THEOREM AND INFINITE PRIMES

CARTER   WAID

Abstract. It is shown that Dirichlet's theorem on primes in an

arithmetic progression is equivalent to the statement that every unit

of a certain quotient ring Z of the nonstandard integers is the image

of an infinite prime. The ring Z is the completion of Z relative to the

"natural" topology on Z.

1. Notation. Throughout this note A shall denote the natural numbers,

Z the rational integers, and P the positive primes. We shall follow the

approach of Machover and Hirschfeld, [2], in our use of nonstandard

analysis. Thus U is to be a universal set containing N and *U will be a

comprehensive [6, p. 446] enlargement of U. The nonstandard natural

numbers *A can be expressed as *A=AuAœ where Nw is the set of

infinite natural numbers. Similarly, *P=P\JPœ, Px the set of infinite

primes.

2. Lemma. Let a, b be coprime integers. A necessary and sufficient con-

dition that the sequence \a+bn\ in e N)contains infinitely many primes is that

\a+bn\ be an infinite prime for some nonstandard natural number n.

Proof.   Clear.

3. Completions of Z. In aseries of papers [4], [5], [6], Robinson derives

the results of this section in a more general setting.

Let p= 0 n ■ *Z (« £ A). The external ideal p of *Z is the monad of 0

for the "natural" topology on Z. It can be characterized both as the set of

all nonstandard integers divisible by every nonzero standard integer and

as the *Z-ideal generated by numbers of the form n\ where « is an infinite

natural number. Clearly Z(~\p=0 so that Z imbeds naturally inZ=*Zjp.

By results of Robinson [3, p. 109] on completions of metric spaces, Zis the

completion of Z with respect to the "natural" topology and hence is the

ring of vi-adic integers [1]. Similarly, let p be a standard prime and set

pP=(\Pn * *Z (« e A). Then pp is the monad of 0 for the usual ^-adic
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topology on Z and can be characterized as either the set of nonstandard

integers divisible by every finite power of/» or as the *Z ideal generated by

numbers of the form/?", « an infinite natural number. Thus Zp=*Z\pp is

the ring of/»-adic integers. It is not difficult to show that p = Ç\ pp ip e P),

and then using the fact that * U is comprehensive, that Z ~JT Zp (p e P).

4. The units of 2. Robinson [5, p. 770] notes that the units of Z are

the residue classes of nonstandard integers which have no standard prime

factors. Using Dirichlet's theorem we can sharpen this result and perhaps

shed some light on infinite primes. If x e *Z we shall let x denote its

residue class in Z.

Theorem. The units of Z are precisely the residue classes p where p

ranges over the infinite primes.

Proof. If p ePœ there is an infinite natural number «</?, and hence

«! and p are prime. Thus p+p • *Z=*Z and p is a unit of 2.

Conversely, if ä is a unit of Z, a ■ *Z+p=*Z, hence a and b are co-

prime for some nonzero b e p. We may assume a and b are positive and,

using Dirichlet's theorem, conclude that a + bn=p is prime for some

n £ *N. Since b is infinite, so is p, and clearly ä=p.

This theorem has an interesting converse which points to a possible

nonstandard "elementary" proof of Dirichlet's theorem.

Theorem. Assume that the units ofZ are the residues of infinite primes.

Then Dirichlet's theorem holds.

Proof. Let a and b be standard coprime integers and consider the

sequence {a+bn} (n £ A). If k is any standard natural number, there is an

ne N such that a + bn is relatively prime to k\ (choose n to be the largest

factor of k\ that is prime to a). Consequently, if k is an infinite natural

number, there is an « £ *N such that a + bn and k\ are relatively prime.

Then a+bn has no standard prime factor and so (see remark at beginning

of this section) (a+bn)    is a unit in Z.

We consider two cases :

(i) lfb>0, (a+bn)~ is a unit in Z and, by our assumption, a + bn=p + d

for some infinite primep and de p. Since b is standard it divides d, and

setting d=bD we see that a + b(n — D)=p. Since/» is positive infinite, n — D

must be positive infinite.

(ii) If ¿><0, (—a—bn)~ is a unit in Z and by an argument similar to the

one above, —a — b(n + D)=p where again n + D e *N. In either case we

have \a+bk\=p for some ke *N. Dirichlet's theorem follows from the

Lemma.
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