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A TWO-DIMENSIONAL  NON-NOETHERIAN
FACTORIAL  RING1

ROBERT  GILMER

Abstract. Let R be a commutative ring with identity and

let G be an abelian group of torsion-free rank a. If {Xx} is a set of

indeterminates over R of cardinality a, then the group ring of G

over R and the polynomial ring Ä[{x"^}] have the same (Krull)

dimension. The preceding result and a theorem due to T. Parker and

the author imply that for each integer k^2, there is a »c-dimensional

non-Noetherian unique factorization domain of arbitrary

characteristic.

Assume that R is an associative ring and S is a semigroup (with

operation written as addition). The semigroup ring of S over R [12,

p. 95] is the set of functions from S into R that are finitely nonzero,

where addition and multiplication are defined by the rules

(f + g)(s) = fis) + gis),

(/g)(s) = 2 /(*)«(«)•
t+u=s

Following D. G. Northcott [15, p. 128], we denote the semigroup ring

of S over R by the symbol RIX; S]; we write the elements of RIX; S]

as "polynomials" axXH + - • ■+anXs", where each at is in R and each st

is in S. In the case where R is an integral domain with identity and S is

abelian with a zero element, the author and T. Parker [10] have recently

determined necessary and sufficient conditions in order that the semigroup

ring RIX; S] be a GCD-domain, a unique factorization domain2 (UFD),

or a principal ideal domain (PID). A special case of Theorem 7.5 of [10]

is the following result, which we label as Theorem 1 for ease of reference.
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© American Mathematical Society 1974

25



26 ROBERT  GILMER [May

Theorem 1. If D is an integral domain with identity and G is an abelian

group, then the group ring DIX; G] of G over D is a UFD if and only if D

is a UFD and G is a torsion-free group with the property that each rank 1

subgroup of G is cyclic.3

To say that each rank one subgroup of G is cyclic is equivalent to the

condition that for each nonzero element g of G, there is a largest positive

integer n0 such that the equation ngx=g is solvable in G. We are able to use

Theorem 1 to give an example of a two-dimensional non-Noetherian UFD

of arbitrary characteristic. The question of the existence of finite-

dimensional non-Noetherian factorial rings has been investigated recently

by J. David in [4] and [5]. In particular, he has proved the existence of a

Âr-dimensional non-Noetherian UFD of characteristic 0 or 2 for each

k^.3. In [4, Conjecture 1.1, Chapter VIII], David conjectures that such

domains exist for arbitrary characteristic, and we are able to verify this

conjecture, but our examples of two-dimensional non-Noetherian factorial

rings negate Conjecture 5.2, Chapter VII of [4]. We begin with some

considerations concerning the dimension of RIX; G], where R is a com-

mutative ring with identity and G is an abelian group.

If H is a subgroup of G and if G\H is a torsion group, then RIX; G] is

integral over its subring RIX; H]. This follows since {Xa}geG generates

RIX; G] as a ring extension of RIX; H] and since, for each g e G, there is

a positive integer kg such that (Xo f* e R[X; H]. Thus, if G has torsion-free

rank a (recall that G has torsion-free rank a if dimQ(Q®G) = a), then

there is a free subgroup F of G of rank a such that G ¡Fis a torsion group,

and dim RlX;G]=dim R[X; F]. Moreover, R[X; F] is isomorphic to

the ring Rl{Xx}, {Xi~1}]XeA, where A is a set of cardinality a. Our first

result concerns the dimension of the ring Rl{XÀ}, {AX1}].

Proposition 1. Let R be a commutative ring with identity, let {Xx}XeA

be a set of indeterminates over R, and let S = R[{X¡], {AT1}]. Then

dimS = dim tf[{A7}].4

Proof. If R is infinite-dimensional, then it is clear that both S and

7?[{A"A}] are infinite-dimensional. If R is finite-dimensional and if A is

infinite, then again /v[{A,J] and S are infinite-dimensional, for if M is a

maximal ideal of R and if {Xx}f=x is an infinite subset of {Xx}, then

(M, Xx —1)<= (M, Xk — 1, XXi— l)c- • • is an infinite chain of prime

ideals of ^[{A^}] that misses the multiplicative system generated by {Xf}.

3 In alternate terminology, this is the condition that each nonzero element of G has

type (0, 0, 0, • ■ ); see [6, p. 147] or [18, p. 203].
4 Compare Proposition 2 with part (2) of Exercise 7, p. 415 of [9].
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If R is finite-dimensional and A={1, 2, • ■ ■ , k} is finite, then dim SS

dim -R[{A;J] since S is a quotient ring of 7?[{A"A}]. On the other hand, it is

known that dim Rl{Xx}]=rankiMl{Xx}])+k for some maximal ideal M

of R [2, Corollary 2.10]. Hence if P0^Px<z- ■ -^pt=Ml{Xx}] is a chain

of prime ideals of R[{XX}] of length t=rank(Ml{Xx}]), then

Po c Pi c • • • c P, <= Pt + (Xx - I) <= • • • <= Pt + (Xx - 1, • • •, Xk - 1)

is a chain of primes of Rl{Xx}], and each of these prime ideals extends to a

proper ideal of S. Consequently, dim S^dim Rl{Xx}], and equality

holds in each case.5

Corollary 1. Assume that a is the torsion-free rank of the group G,

and let {Xx}XeA be a set of indeterminates over R, where \A\=a.. Then

dimRlX;G]=dimRl{Xx}XeA].

Corollary 2. If R is a Prüfer domain or a commutative Noetherian

ring with identity, and if G is an abelian group of finite torsion-free rank a,

then dim RIX; G]=dim R+ol.

Proof. If R satisfies the hypothesis of Corollary 2, then it is well

known that6 dim R[XX, • •■ , A'„]=dim R+n for each positive integer «.

We are now in a position to give examples of non-Noetherian factorial

rings of arbitrary characteristic and of arbitrary dimension k^.2. We begin

with the result that there exists a torsion-free abelian group L of rank

two such that each rank one subgroup of L is cyclic, but L is not finitely

generated; the first example of such a group in the literature seems to be

due to Pontryagin [16], but Pontryagin's original construction has been

generalized extensively (see [6, p. 151] or [7, Vol. II, §88]). If r is a

nonnegative integer, and if Lr is the direct sum of the group L and r

copies of the infinite cyclic group, then Lr is a torsion-free group of

rank r+2, each rank one subgroup of Lr is cyclic, and Lr is not finitely

generated. If A" is a field, it follows from Theorem 1 that KIX; Lr] is a

UFD, and Corollary 1 implies that KIX; Lr] has dimension r+2. Finally,

6 In the case in which A is finite, an alternate proof of the equality dim S=

à\mR[{Xx)l is obtained from the fact that R[Xt, ■ ■ ■ , Xk, A~r\ ■ ■ -, X^\ is integral
over its subring Ä[ArI + A'f \ • • • , X^X^l-

6 For an in-depth study of the sequence dim R[X¡], dim R[XU X2], ■ ■ ■ ,

dim R[Xlt ■ ■ ■ , Xnl, ■ ■ ■ , see [1], [2]. The case of Corollary 2 in which R is Noetherian

can be obtained from Theorems 2.5 and 3.7 of [19], together with (h) of [17] (also,

see Corollaire 3, p. 426 of [8]). While the considerations of [19] may seem more general

than those we have undertaken in regard to the dimension of R[X; G], there is actually

little overlap between our results and those of [19] since, in general, only the inequality

dim Äi A-dim J? need hold, even for a commutative ring R [11, Example 2.9 and

Proposition 7.8] (the notation K-dim R is that of [19]).
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KIX; Lr] is not Noetherian, for it is known that if R is an associative ring

with identity and if G is an abelian group, then RIX; G] is right Noetherian

if and only if R is right Noetherian and G is finitely generated [3], [13,

p. 154]. We have therefore proved the following theorem.

Theorem 2. If K is afield and r is a nonnegative integer, then the group

ring KIX; Lr+2] is a non-Noetherian unique factorization domain of dimen-

sion r+2.

The domains K[X; Lr+2] of Theorem 2 are not quasi-local, and hence

the following question arises. Does there exist a non-Noetherian quasi-

local UFD of dimension r for each r^2? We show presently that the

answer to this question is affirmative, and in fact, we show that the charac-

teristic of such a UFD may be an arbitrary prime integer. Our approach to

this problem is to consider localizations of the domains KIX; Lr+2];

in fact, we restrict to localizations at the augmentation ideal

({1 — X3\g e Lr+2}). Our proof uses the following result, which follows im-

mediately from Proposition 6 of [3].

Proposition 2. Assume that R is a commutative ring with identity,

S is a cancellative additive abelian semigroup with zero, and ie5-{0}.

The element 1— Xs is a zero divisor of the semigroup ring RIX; S] if and

only if ns=0 for some positive integer n. If I —Xs is a zero divisor in RIX; S]

and ifk is the smallest positive integer such that ks=0, then the annihilator

of I—Xs is the principal ideal of RIX; S] generated by l+Xs+X2s-]-1-

If H is a normal subgroup of the group G and if R is an associative

ring with identity, then the natural homomorphism <f>:G—>G¡H of G

onto G\H induces a unique Ä-homomorphism <f>* of RIX; G] onto

RIX; G/H] such that <¿*(/Af')=/-A<M!') for each r in R and each g in G.

Moreover, if {gx} is a subset of H that generates H, then {1 — Xa"} generates

the kernel of <f>*; see [3], [13, p. 154]. We use these results to obtain the

next theorem.

Theorem 3. Let F be afield and let G be a nonfinitely generated torsion-

free abelian group with a finitely generated subgroup H such that GjH

is a p-group. If M is the maximal ideal of D=FIX; G] generated by

{1 — X9\g e G}, then the ideal MDm of Dm is finitely generated if and only

if the characteristic of F is distinct from p.

Proof. The ideal M consists of all elements 2" aiXa' such that

2í a¿=0. We let {/¡JJii be a finite set of generators of the subgroup H

of G. If the characteristic of Fis different from/», then {l—Xhi}xn generates

MDM, for if g e G — H, then g+H has order/»* in GjH for some positive
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integer  k.   Since   1+A»H-\-X{vk-l)g $ M because pk^0,  it follows

that

1 - Xa = (1 - Xp"9)lil + Xg + ■ ■ ■ + x{vk-1)9)

is in the ideal of DM generated by {1 -Xh>}?=,.

On the other hand, we prove that if F has characteristic/?, then MDM

is not finitely generated. We assume, on the contrary, that {1—Jf*'}<-i

is a finite set of generators for MDM. Without loss of generality, assume

that {/¡J™— {^Jï. and hence G\K is a/»-group, where K is the subgroup

of G generated by {k{}rx. Since G is not finitely generated, there is an element

g in G-K. By assumption, (l-X")fe ({1-A**}i) for some/in D-M.

If <p is the natural homomorphism of G onto G\K and if </>* is the induced

homomorphism of D onto F[A; G\K], then <¡>*(l-X9)<t>*(f)=0. But

this contradicts Proposition 2—since the order of g+K is a positive

power of /», the annihilator of <f>*(l — A9) = l— X0+K is contained in

({l-Aa+A'|aEG}), and/is in ({1 -Xa\a e G})=M. This contradiction

establishes the assertion of Theorem 3 that MDM is not finitely generated

if F is of characteristic /».

Theorem 3 can be generalized, but the statement of Theorem 3 given

serves our purposes well. Thus if p is prime, then there is a nonfinitely

generated abelian group L of rank two such that each rank one subgroup

of L is cyclic and such that L\H is a /»-group for some finitely generated

subgroup H of L (see [6, p. 151] or [7, Vol. II, §88]). If F is a field of
characteristic/» and if D=F\X; L], then as we have already observed, D

is a two-dimensional non-Noetherian UFD. If M is the maximal ideal of

D generated by {1 — X"\g e L}, then Theorem 3 shows that DM is a non-

Noetherian quasi-local UFD of dimension two and characteristic /».

More generally, if J=DIXX\ ■■■ , Xf1] and if Mx=M+(Xx-l, • • ■ ,
XT— 1), then JMi is a non-Noetherian quasi-local UFD of characteristic

p and dimension r + 2. That JM is a quasi-local UFD of characteristic /»

is clear; JMl is not Noetherian because JMJ{Xx—\, ■• ■ , Xr—l}Jx¡i is

isomorphic to DM and DM is not Noetherian. The domain J is isomorphic

to FIX; L®G], where G is a direct sum of r copies of Z, and hence J

has dimension r + 2 by Corollary 2. Moreover, the proof of Proposition 1

shows that the ideal Mx has height r + 2 so that dimJMi=r+2. In

summary, we have established the following result, Theorem 4.

Theorem 4. If p is a prime integer and r is an integer greater than or

equal to two, then there exists a quasi-local non-Noetherian UFD of dimen-

sion r and characteristic p.

We remark that J. Brewer, D. Costa, and L. Lady have recently con-

sidered the prime ideal structure of D[X; G], where G is an abelian group

of finite torsion-free rank. In particular, they have shown that if R is a
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field of characteristic 0, then 7?[A; G]P is a regular local ring for each

proper prime ideal P of RIX; G]. This means that the technique used to

obtain Theorem 4 fails in the case of characteristic 0, but they have

shown that an appropriate localization of Z[G], where G is the direct sum

of three copies of the additive group of rationals whose denominators are

powers of the prime integer/», is a two-dimensional non-Noetherian quasi-

local UFD of characteristic 0.
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