FIXED POINTS BY A NEW ITERATION METHOD

SHIRO ISHIKAWA

Abstract

The following result is shown. If T is a lipschitzian pseudo-contractive map of a compact convex subset E of a Hilbert space into itself and x_{1} is any point in E, then a certain mean value sequence defined by $x_{n+1}=\alpha_{n} T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]+\left(1-\alpha_{n}\right) x_{n}$ converges strongly to a fixed point of T, where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are sequences of positive numbers that satisfy some conditions.

It was recently shown in [1] that a mean value iteration method is available to find a fixed point of a strictly pseudo-contractive map. In this paper we shall prove that a certain sequence of points which is iteratively defined converges always to a fixed point of a lipschitzian pseudo-contractive map. For the definitions of a strictly pseudo-contractive map and a pseudo-contractive map in a Hilbert space, see, for example, [3].

Theorem. If E is a convex compact subset of a Hilbert space H, T is a lipschitzian pseudo-contractive map from E into itself and x_{1} is any point in E, then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to a fixed point of T, where x_{n} is defined iteratively for each positive integer n by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]+\left(1-\alpha_{n}\right) x_{n} \tag{1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ are sequences of positive numbers that satisfy the following three conditions:

$$
\begin{align*}
0 \leqq \alpha_{n} \leqq \beta_{n} \leqq & 1 \text { for all positive integers } n \tag{2}\\
& \lim _{n \rightarrow \infty} \beta_{n}=0 \tag{3}\\
& \sum_{n=1}^{\infty} \alpha_{n} \beta_{n}=\infty
\end{align*}
$$

As a particular case, we may choose for instance $\alpha_{n}=\beta_{n}=n^{-1 / 2}$.
Received by the editors November 24, 1972 and, in revised form, March 28, 1973 and August 16, 1973.

AMS (MOS) subject classifications (1970). Primary 47H10; Secondary 40A05.
Key words and phrases. Iteration method, pseudo-contractive map.

Proof. We have, for any x, y, z in a Hilbert space H and a real number λ,

$$
\begin{aligned}
\| \lambda x+ & (1-\lambda) y-z\left\|^{2}=\right\| \lambda(x-y)+y-z \|^{2} \\
= & \lambda^{2}\|x-y\|^{2}+\|y-z\|^{2}+2 \lambda \operatorname{Re}(x-y, y-z) \\
= & \lambda^{2}\|x-y\|^{2}+\|y-z\|^{2} \\
& +\lambda \operatorname{Re}\left[\left(\|x\|^{2}-2(x, z)+\|z\|^{2}\right)\right. \\
& \left.\quad-\left(\|x\|^{2}-2(x, y)+\|y\|^{2}\right)-\left(\|z\|^{2}-2(z, y)+\|y\|^{2}\right)\right] \\
& \quad \lambda^{2}\|x-y\|^{2}+\|y-z\|^{2}+\lambda\left(\|x-z\|^{2}-\|x-y\|^{2}-\|y-z\|^{2}\right) \\
= & \lambda\|x-z\|^{2}+(1-\lambda)\|y-z\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} .
\end{aligned}
$$

Since T is pseudo-contractive, for any x, y in E,

$$
\begin{equation*}
\|T x-T y\|^{2} \leqq\|x-y\|^{2}+\|(I-T) x-(I-T) y\|^{2} \tag{6}
\end{equation*}
$$

where I is an identity map.
From the assumption that T is lipschitzian, we also have that there is a positive number L such that

$$
\begin{equation*}
\|T x-T y\| \leqq L\|x-y\| \quad \text { for any } x, y \text { in } E \tag{7}
\end{equation*}
$$

From Schauder's fixed point theorem, $F(T)$, the set of fixed points of T, is nonempty since E is a convex compact set and T is continuous. Let p denote any point of $F(T)$.

We have, from (5) in which λ stands for α_{n} or β_{n}, the following three equalities, namely
$\left\|x_{n+1}-p\right\|^{2}=\left\|\alpha_{n} T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]+\left(1-\alpha_{n}\right) x_{n}-p\right\|^{2}$

$$
\begin{align*}
= & \alpha_{n}\left\|T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2} \tag{8}\\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]-x_{n}\right\|^{2},
\end{align*}
$$

$$
\begin{align*}
\left\|\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}-p\right\|^{2}= & \beta_{n}\left\|T x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& -\beta_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2}, \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
\| \beta_{n} T x_{n}+ & \left(1-\beta_{n}\right) x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right] \|^{2} \\
= & \beta_{n}\left\|T x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left\|x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]\right\|^{2} \tag{10}\\
& -\beta_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2} .
\end{align*}
$$

Moreover from (6) we have the following two inequalities, namely

$$
\left\|T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]-p\right\|^{2}=\left\|T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]-T p\right\|^{2}
$$

$$
\begin{align*}
\leqq & \left\|\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}-p\right\|^{2} \tag{11}\\
& +\left\|\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]\right\|^{2}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|T x_{n}-p\right\|^{2}=\left\|T x_{n}-T p\right\|^{2} \leqq\left\|x_{n}-p\right\|^{2}+\left\|x_{n}-T x_{n}\right\|^{2} \tag{12}
\end{equation*}
$$

Performing the calculation according to (8) $+\alpha_{n}[(9)+(10)+(11)+$ $\beta_{n} \cdot(12)$] side by side and eliminating common terms on both sides of the resulting inequality, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leqq & \left\|x_{n}-p\right\|^{2}-\alpha_{n} \beta_{n}\left(1-2 \beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2} \\
& +\alpha_{n} \beta_{n}\left\|T x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]\right\|^{2} \\
& -\alpha_{n}\left(\beta_{n}-\alpha_{n}\right)\left\|x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]\right\|^{2}
\end{aligned}
$$

and it follows from condition (2) that

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} \leqq & \left\|x_{n}-p\right\|^{2}-\alpha_{n} \beta_{n}\left(1-2 \beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2} \tag{13}\\
& +\alpha_{n} \beta_{n}\left\|T x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]\right\|^{2} .
\end{align*}
$$

Now since T is lipschitzian, we have, from (7),

$$
\begin{equation*}
\left\|T x_{n}-T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]\right\| \leqq L \beta_{n}\left\|T x_{n}-x_{n}\right\| \tag{14}
\end{equation*}
$$

We have finally from (13) and (14),

$$
\begin{equation*}
\left\|x_{n+1}-p\right\|^{2} \leqq\left\|x_{n}-p\right\|^{2}-\alpha_{n} \beta_{n}\left(1-2 \beta_{n}-L^{2} \beta_{n}^{2}\right)\left\|T x_{n}-x_{n}\right\|^{2} \tag{15}
\end{equation*}
$$

Therefore adding these inequalities with $m, m+1, \cdots, n$ for n, we derive the following inequality

$$
\left\|x_{n+1}-p\right\|^{2} \leqq\left\|x_{m}-p\right\|^{2}-\sum_{k=m}^{n} \alpha_{k} \beta_{k}\left(1-2 \beta_{k}-L^{2} \beta_{k}^{2}\right)\left\|T x_{k}-x_{k}\right\|^{2}
$$

from which we have

$$
\sum_{k=m}^{n} \alpha_{k} \beta_{k}\left(1-2 \beta_{k}-L^{2} \beta_{k}^{2}\right)\left\|T x_{k}-x_{k}\right\|^{2} \leqq\left\|x_{m}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}
$$

From condition (3), there is some positive integer N such that $2 \beta_{k}+$ $L^{2} \beta_{k}^{2}<\frac{1}{2}$ for all integers $k \geqq N$. Then if m is larger than N, we can get the following inequality

$$
\frac{1}{2} \sum_{k=m}^{n} \alpha_{k} \beta_{k}\left\|T x_{k}-x_{k}\right\|^{2} \leqq\left\|T x_{m}-p\right\|^{2}-\left\|T x_{n+1}-p\right\|^{2}
$$

The last member is bounded since E is a bounded set. Therefore the series on the left hand side is bounded. From condition (4) this should imply that $\lim \inf _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$, which in turn implies from the compactness of E that there is a subsequence $\left\{x_{n_{i}}\right\}_{i=1}^{\infty}$ that converges to a certain point q of $F(T)$.

Since q is a fixed point of T, from (15) we see that if $n \geqq N$,

$$
\begin{equation*}
\left\|x_{n+1}-q\right\| \leqq\left\|x_{n}-q\right\| . \tag{16}
\end{equation*}
$$

Let ε be any positive number. Then there is an $n_{i 0}$ such that $\left\|x_{n_{i 0}}-q\right\| \leqq \varepsilon$ and $n_{i 0} \geqq N$. Hence from (16), $\left\|x_{n}-q\right\| \leqq \varepsilon$ for $n \geqq n_{i 0}$.

This completes the proof of the theorem.
The author wishes to express his sincere thanks to Professor H. Fujita and Professor T. Kawata for their kind suggestions.

References

1. G. G. Johnson, Fixed points by mean value iterations, Proc. Amer. Math. Soc. 34 (1972), 193-194. MR 45 \#1006.
2. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. MR 14, 988.
3. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228. MR 36 \#747.
4. R. L. Franks and R. P. Marzec, A theorem on mean value iterations, Proc. Amer. Math. Soc. 30 (1971), 324-326. MR 43 \#6375.

Faculty of Engineering, Department of Electrical Engineering, Keio UniVersity, Yokohama, Japan

