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FIXED  POINTS  BY A NEW  ITERATION  METHOD

SHIRO  ISHIKAWA

Abstract. The following result is shown. If T is a lipschitzian

pseudo-contractive map of a compact convex subset E of a Hubert

space into itself and x^ is any point in E, then a certain mean value

sequence defined by xn+1 = anT[ßnTxn+ (1 — ßn)xn] + (1 —a„)x„ con-

verges strongly to a fixed point of T, where {a„} and {/?„} are se-

quences of positive numbers that satisfy some conditions.

It was recently shown in [1] that a mean value iteration method is

available to find a fixed point of a strictly pseudo-contractive map. In this

paper we shall prove that a certain sequence of points which is iteratively

defined converges always to a fixed point of a lipschitzian pseudo-con-

tractive map. For the definitions of a strictly pseudo-contractive map and

a pseudo-contractive map in a Hubert space, see, for example, [3].

Theorem. If E is a convex compact subset of a Hubert space H, T is a

lipschitzian pseudo-contractive map from E into itself and x, is any point in

E, then the sequence {x„},?=1 converges strongly to a fixed point ofT, where

xn is defined iteratively for each positive integer n by

(1) *»+i = v-nTlßnTxn + (1 - ßn)xn] + (1 - a.n)xn,

where {are}"=1 and {ßn}n=i °re sequences of positive numbers that satisfy the

following three conditions:

(2) 0 S <xn S ßn S 1   for all positive integers n,

(3) lim ßn = 0,
n—>oo

CO

(4) Y a A = co.
71=1

As a particular case, we may choose for instance an=ßn=n~'1/2.
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Proof. We have, for any x, y, z in a Hubert space H and a real

number X,

\\Xx + (1 - X)y -z\\2= \\X(x -y)+y- z\\2

= X2 \\x-y\\2 + \\y - z\\2 + 2X Re(x-y,y - z)

= X2 \\x - y\\2 + \\y - z\\2

(5) +ARe[(!|x||2-2(x,z)+ ||z||2)

- (¡|x||2 - 2ix,y) + \\y\\2) - i\\z\\2 - 2(z,y) + ||y||2)]

= X? \\x - y\\2 + \\y - z\\2 + X(\\x - z\\2 - \\x - y\\2 - \\y - z\\2)

= X \\x - z\\2 + (l-X) \\y - z\\2 - X(l - X) ||x - y\\2.

Since F is pseudo-contractive, for any x, y in E,

(6) || Fx - Ty\\2 S \\x - y\\2 + ||(/ - F)x - (/ - T)y\\2,

where / is an identity map.

From the assumption that Fis lipschitzian, we also have that there is a

positive number L such that

(7) || Fx — Ty\\ S L \\x — y\\    for any x, y in E.

From Schauder's fixed point theorem, FiT), the set of fixed points of T,

is nonempty since F is a convex compact set and F is continuous. Let p

denote any point of F(T).

We have, from (5) in which X stands for <x„ or ßn, the following three

equalities, namely

IK+i -Fll2 = \WnTlßnTxn + (1 - ßn)xn] + (1 - a>„ -p\\*

(8) = a„ \\T{ßnTxn + (1 - ßn)xn] -//|la+ (1 - a„) ¡|xB -p\\2

- an(l - a„) ¡I TlßnTxn + (1 - ßn)xn] - xn\\2,

\\ß«Txn + (1 - ßn)xn -p\\2 = ßn \\Txn-p\\2 + (1 - ßn) \\xn-p\\2

U -ßnil-ßn)\\Txn-Xn\\2,

and

\\ßnTxn + (1 - ß„)xn - T{ßnTxn + (1 - ßn)xn]\\2

= ßn \\Txn - TlßnTxn + (1 - ßn)xn]\\2

(10) + (1 - ßn) Un - TlßnTxn + (1 - ^)x„]||2

-ß,fl - ßn) \\Txn - xn\\2.

Moreover from (6) we have the following two inequalities, namely

\\TlßnTxn + (1 - ßn)xn] -/»II2 = \\T{ßnTxn + (1 - ßn)xn] - Tp\\2

(11) S \\ßnTxn + il - ßn)xn - p\\2

+ \\ßnTxn+il- ßn)xn - TlßnTxn + (1 - ßn)xn]\\2,
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and

(12)      \\Txn-p\\2 = \\Txn - Tp\\2 S \\xn-p\\2 + ||x„ - TxJ2.

Performing the calculation according to (8) +aM[(9) + (10) + (ll) +

ßn ■ (12)] side by side and eliminating common terms on both sides of the

resulting inequality, we have

ll*„+l ~pV =  WXn-pV - «JnO   - 2ßn) \\Txn - Xn\\2

+ anßn \\Txn - TlßnTxn + (1 - ßn)x„]\\2

- *n(ßn - «J II*« -  WnTxn +  (1   - /SJxJII2,

and it follows from condition (2) that

IK+i -PV = \\xn-p\\2 - aj„il - 2ßn) \\Txn - xn\\2

+ olJ„ \\Txn - TlßnTxn + (1 - ßn)xn]\\2.

Now since Fis lipschitzian, we have, from (7),

(14) \\Txn - TlßnTxn + (1 - ßn)xn]\\ S Lßn \\Txn - xj|.

We have finally from (13) and (14),

(15) \\xn+x-p\\2 S \\xn-P\\2 - y.Jn(l - 2ßn - Üßl) \\Txn - x„|¡2.

Therefore adding these inequalities with m, m+l, ■••,// for n, we

derive the following inequality

hn+l - Pf =   Um - Pf - ¿«Ail   - 2ßk - Üßl) \\Txk - Xk\\\

from which we have

¿*A(1 - 2ßk - L2ßl) ||Fx, - x,l|2 S \]xm - p\\2 - \\xn+x - p\
2

From condition (3), there is some positive integer N such that 2ßk +

E2ßk<2 for all integers k^N. Then if m is larger than N, we can get the

following inequality

\ 2 <*A «Fx, - x,||2 S \\Txm - p\\2 - \\Txn+x - p\\\
¿- k—m

The last member is bounded since F is a bounded set. Therefore the

series on the left hand side is bounded. From condition (4) this should

imply that lim infn^00\\Txn—xj|=0, which in turn implies from the

compactness of E that there is a subsequence {xn}f=x that converges to a

certain point q of F(T).

Since q is a fixed point of F, from (15) we see that if n^.N,

(16) ||xn+1 -q\\ S \\x„ -q\\.
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Let e be any positive number. Then there is an ni0 such that ||x„ — q\\<_e

and ni0^.N. Hence from (16), ||xn—^||^e for n^.ni0.

This completes the proof of the theorem.

The author wishes to express his sincere thanks to Professor H. Fujita

and Professor T. Kawata for their kind suggestions.
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