FIXED POINTS BY A NEW ITERATION METHOD

SHIRO ISHIKAWA

ABSTRACT. The following result is shown. If T is a lipschitzian pseudo-contractive map of a compact convex subset E of a Hilbert space into itself and x_1 is any point in E, then a certain mean value sequence defined by $x_{n+1} = \alpha_n T [\beta_n T x_n + (1-\beta_n) x_n] + (1-\alpha_n) x_n$ converges strongly to a fixed point of T, where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences of positive numbers that satisfy some conditions.

It was recently shown in [1] that a mean value iteration method is available to find a fixed point of a strictly pseudo-contractive map. In this paper we shall prove that a certain sequence of points which is iteratively defined converges always to a fixed point of a lipschitzian pseudo-contractive map. For the definitions of a strictly pseudo-contractive map and a pseudo-contractive map in a Hilbert space, see, for example, [3].

THEOREM. If E is a convex compact subset of a Hilbert space H, T is a lipschitzian pseudo-contractive map from E into itself and x_1 is any point in E, then the sequence $\{x_n\}_{n=1}^{\infty}$ converges strongly to a fixed point of T, where x_n is defined iteratively for each positive integer n by

(1)
$$x_{n+1} = \alpha_n T[\beta_n T x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n,$$

where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences of positive numbers that satisfy the following three conditions:

(2)
$$0 \le \alpha_n \le \beta_n \le 1$$
 for all positive integers n ,

$$\lim_{n\to\infty}\beta_n=0,$$

$$\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty.$$

As a particular case, we may choose for instance $\alpha_n = \beta_n = n^{-1/2}$.

Received by the editors November 24, 1972 and, in revised form, March 28, 1973 and August 16, 1973.

AMS (MOS) subject classifications (1970). Primary 47H10; Secondary 40A05. Key words and phrases. Iteration method, pseudo-contractive map.

PROOF. We have, for any x, y, z in a Hilbert space H and a real number λ ,

$$\|\lambda x + (1 - \lambda)y - z\|^{2} = \|\lambda(x - y) + y - z\|^{2}$$

$$= \lambda^{2} \|x - y\|^{2} + \|y - z\|^{2} + 2\lambda \operatorname{Re}(x - y, y - z)$$

$$= \lambda^{2} \|x - y\|^{2} + \|y - z\|^{2}$$
(5)
$$+ \lambda \operatorname{Re}[(\|x\|^{2} - 2(x, z) + \|z\|^{2}) - (\|z\|^{2} - 2(z, y) + \|y\|^{2}) - (\|z\|^{2} - 2(z, y) + \|y\|^{2})]$$

$$= \lambda^{2} \|x - y\|^{2} + \|y - z\|^{2} + \lambda(\|x - z\|^{2} - \|x - y\|^{2} - \|y - z\|^{2})$$

$$= \lambda \|x - z\|^{2} + (1 - \lambda) \|y - z\|^{2} - \lambda(1 - \lambda) \|x - y\|^{2}.$$

Since T is pseudo-contractive, for any x, y in E,

(6)
$$||Tx - Ty||^2 \le ||x - y||^2 + ||(I - T)x - (I - T)y||^2,$$

where I is an identity map.

From the assumption that T is lipschitzian, we also have that there is a positive number L such that

(7)
$$||Tx - Ty|| \le L ||x - y||$$
 for any x, y in E .

From Schauder's fixed point theorem, F(T), the set of fixed points of T, is nonempty since E is a convex compact set and T is continuous. Let p denote any point of F(T).

We have, from (5) in which λ stands for α_n or β_n , the following three equalities, namely

$$||x_{n+1} - p||^2 = ||\alpha_n T[\beta_n Tx_n + (1 - \beta_n)x_n] + (1 - \alpha_n)x_n - p||^2$$

$$= \alpha_n ||T[\beta_n Tx_n + (1 - \beta_n)x_n] - p||^2 + (1 - \alpha_n) ||x_n - p||^2$$

$$- \alpha_n (1 - \alpha_n) ||T[\beta_n Tx_n + (1 - \beta_n)x_n] - x_n||^2,$$

(9)
$$\|\beta_n T x_n + (1 - \beta_n) x_n - p\|^2 = \beta_n \|T x_n - p\|^2 + (1 - \beta_n) \|x_n - p\|^2 - \beta_n (1 - \beta_n) \|T x_n - x_n\|^2,$$

and

(10)
$$\|\beta_{n}Tx_{n} + (1 - \beta_{n})x_{n} - T[\beta_{n}Tx_{n} + (1 - \beta_{n})x_{n}]\|^{2}$$

$$= \beta_{n} \|Tx_{n} - T[\beta_{n}Tx_{n} + (1 - \beta_{n})x_{n}]\|^{2}$$

$$+ (1 - \beta_{n}) \|x_{n} - T[\beta_{n}Tx_{n} + (1 - \beta_{n})x_{n}]\|^{2}$$

$$- \beta_{n}(1 - \beta_{n}) \|Tx_{n} - x_{n}\|^{2}.$$

Moreover from (6) we have the following two inequalities, namely

$$||T[\beta_n Tx_n + (1 - \beta_n)x_n] - p||^2 = ||T[\beta_n Tx_n + (1 - \beta_n)x_n] - Tp||^2$$

$$(11) \qquad \leq ||\beta_n Tx_n + (1 - \beta_n)x_n - p||^2$$

$$+ ||\beta_n Tx_n + (1 - \beta_n)x_n - T[\beta_n Tx_n + (1 - \beta_n)x_n]||^2,$$

and

$$(12) ||Tx_n - p||^2 = ||Tx_n - Tp||^2 \le ||x_n - p||^2 + ||x_n - Tx_n||^2.$$

Performing the calculation according to (8) $+\alpha_n[(9)+(10)+(11)+\beta_n\cdot(12)]$ side by side and eliminating common terms on both sides of the resulting inequality, we have

$$||x_{n+1} - p||^2 \le ||x_n - p||^2 - \alpha_n \beta_n (1 - 2\beta_n) ||Tx_n - x_n||^2 + \alpha_n \beta_n ||Tx_n - T[\beta_n Tx_n + (1 - \beta_n)x_n]||^2 - \alpha_n (\beta_n - \alpha_n) ||x_n - T[\beta_n Tx_n + (1 - \beta_n)x_n]||^2,$$

and it follows from condition (2) that

(13)
$$||x_{n+1} - p||^2 \le ||x_n - p||^2 - \alpha_n \beta_n (1 - 2\beta_n) ||Tx_n - x_n||^2 + \alpha_n \beta_n ||Tx_n - T[\beta_n Tx_n + (1 - \beta_n)x_n]||^2.$$

Now since T is lipschitzian, we have, from (7),

(14)
$$||Tx_n - T[\beta_n Tx_n + (1 - \beta_n)x_n]|| \le L\beta_n ||Tx_n - x_n||.$$

We have finally from (13) and (14),

$$(15) \quad \|x_{n+1} - p\|^2 \le \|x_n - p\|^2 - \alpha_n \beta_n (1 - 2\beta_n - L^2 \beta_n^2) \|Tx_n - x_n\|^2.$$

Therefore adding these inequalities with $m, m+1, \dots, n$ for n, we derive the following inequality

$$\|x_{n+1} - p\|^2 \le \|x_m - p\|^2 - \sum_{k=m}^n \alpha_k \beta_k (1 - 2\beta_k - L^2 \beta_k^2) \|Tx_k - x_k\|^2,$$
 from which we have

$$\sum_{k=m}^{n} \alpha_{k} \beta_{k} (1 - 2\beta_{k} - L^{2} \beta_{k}^{2}) \|Tx_{k} - x_{k}\|^{2} \leq \|x_{m} - p\|^{2} - \|x_{m+1} - p\|^{2}.$$

From condition (3), there is some positive integer N such that $2\beta_k + L^2\beta_k^2 < \frac{1}{2}$ for all integers $k \ge N$. Then if m is larger than N, we can get the following inequality

$$\frac{1}{2} \sum_{k=0}^{n} \alpha_k \beta_k \| Tx_k - x_k \|^2 \le \| Tx_m - p \|^2 - \| Tx_{n+1} - p \|^2.$$

The last member is bounded since E is a bounded set. Therefore the series on the left hand side is bounded. From condition (4) this should imply that $\liminf_{n\to\infty} ||Tx_n-x_n||=0$, which in turn implies from the compactness of E that there is a subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ that converges to a certain point q of F(T).

Since q is a fixed point of T, from (15) we see that if $n \ge N$,

$$||x_{n+1} - q|| \le ||x_n - q||.$$

Let ε be any positive number. Then there is an n_{i0} such that $||x_{n_{i0}} - q|| \le \varepsilon$ and $n_{i0} \ge N$. Hence from (16), $||x_n - q|| \le \varepsilon$ for $n \ge n_{i0}$.

This completes the proof of the theorem.

The author wishes to express his sincere thanks to Professor H. Fujita and Professor T. Kawata for their kind suggestions.

REFERENCES

- 1. G. G. Johnson, *Fixed points by mean value iterations*, Proc. Amer. Math. Soc. 34 (1972), 193-194. MR 45 #1006.
- 2. W. R. Mann, *Mean value methods in iteration*, Proc. Amer. Math. Soc. 4 (1953), 506-510. MR 14, 988.
- 3. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228. MR 36 #747.
- **4.** R. L. Franks and R. P. Marzec, *A theorem on mean value iterations*, Proc. Amer. Math. Soc. **30** (1971), 324–326. MR **43** #6375.

FACULTY OF ENGINEERING, DEPARTMENT OF ELECTRICAL ENGINEERING, KEIO UNIVERSITY, YOKOHAMA, JAPAN