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FOURIER  TRANSFORMS  AND  MEASURE-PRESERVING

TRANSFORMATIONS1

O.   CARRUTH   McGEHEE

Abstract. There exists a continuous function / on the real

line, vanishing at infinity, such that, for every measure-preserving

transformation h, the composition /o h fails to be a Fourier

transform. This fact is a consequence of a theorem about measur-

able functions which is obtained from the theory of idempotents.

When G is a locally compact abelian group, and Y is its dual group,

let A(G) denote the algebra of Fourier transforms of elements of L1(Y),

as described in Rudin's book [9, Chapter 1]. Let Z, R and F denote

respectively the integer group, the real number system, and the circle

group.

lean-Pierre Kahane [4] adapted the work of P. J. Cohen and H.

Davenport [3] to show that there is a function/in C0(Z) such that for

every permutation/» of the integers, f°p fails to be in A(Z). In this paper,

the following result is obtained in a similar way.

Theorem 1. There is a function f in C0(R) such that for every measure-

preserving transformation h:R^-R,f° h fails to be in A(R).

Theorem 1 is a consequence of the stronger Theorem 2 below, which

concerns measurable functions, not just continuous ones. If S is a Lebesgue-

measurable set, let \S\ denote the measure of S. Let L0(R) denote the

class of Lebesgue-measurable functions/ such that |{x:|/(x)|>e}| is

finite for every e>0.

Theorem 2. For every positive number s, there exist small positive

numbers a = a(i) and e = e(s) such that iff e L0(R) and if

\{x:e < |/(x)|< 1}|< a|{x:|/(x)| ^ 1}|,

then there is a discrete measure p e MiR) such that \\fi\\MSl and \¡ fodp\ >s.

Theorem 2 implies that if/e L0iR) and

(1) |{x:£(s) < sm |/(x)| < 1}|< «(s) |{x:s1/2 |/(x)| ^ 1}|,
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then there is a discrete measure p such that [|/ê||<» = 1 and \$fdp\>y/s.

It is easy to construct a function fe C0(R) such that (1) is satisfied for a

sequence of values of s tending to co. If h is a measure-preserving trans-

formation, then/o/, also satisfies (1) for the same values of s. If MX(R)

denotes the space of discrete finite measures on R, then

sup Jf ° h dp :peMx(R),\\p\\CDSl) = co

Therefore/o h cannot belong to A(R), since

Jg dp |glL<R>llr*ILforge/l(R),       peMiR).

Thus Theorem 1 follows from Theorem 2.

This work was done while trying to answer a question attributed to

N. N. Lusin ([1, Volume 1, p. 330] or [2, p. 168]), which concerns homeo-

morphisms instead of measure-preserving transformations:

Is it true that for every continuous function/on the circle group

F there is a homeomorphism  <p from  F onto  F such that

foyeAiT)"!

Kahane's result, cited above, is that with Z in the role of F, the answer

is no. The answer for F or R is not known. For related work see [5]

or [6, VII. 9], and [7] and [8].

We do not know how to prove a satisfactory analogue of Theorem 2

for the case of the circle group. We offer the following conjecture: For

every s>0, there exist small positive numbers a = a(s) and e=e(s) such

that if/is a measurable function on Fand if

|{x:e < |/(x)| < 1}|< a • min{|{x: |/(x)| ^ 1}|, \f~H0)\},

then there is a discrete measure p e M(T) such that ||/<||oo = 1 and

\§fdp\>s. It would follow from this result, of course, that there is a

continuous function on F of which no measure-preserving rearrangement

is in A(T).

It remains to prove Theorem 2. The next two results are from [3], and

we omit the proof of the first one.

Lemma 1. Let mx, ■ ■ ■ ,mr be integers, and let z,, • ■ • , zr be numbers

of modulus 1, where r>3. If g is a trigonometric polynomial, \g(x)\Slforall

real x, and

G(x) = g(x) 1 - 2r~2 - r'32^jeimiX - mjX)\ + r"5/2 £ zV(m;..x)
y i<¡ i j

iwhere e(r) means e2ïïlt), then |G(x)|^l for all real x.
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Lemma 2. Let P, Q and q be sets of integers, QCiq = 0, Q={nj}f=x,

«i>«2>' • ->«a-- For peP, let Nip) be the number of integers in Q^Jq

that are greater than or equal to p. Let r be an integer such that

r(r - l)v
(2) r+   \       ¿Nip)<N.

2 pel*

Then there is a subset {m¡}Tj^x of'Q such that mx~>m2~>- • -~>mr,

(3) p + m¿ — m¡^QVJ q    if p e P and i < j,

where i( j) Sj + —- 2 N(p)-(4) m} = ntU)
2 peP

Proof. The m/s may be chosen inductively. Let mx=nx. Having

chosen m¡_x, let m¡ be the largest integer in Q that is less than m¿_x and

satisfies (3). Condition (3) rules out at most (_/'— l)2j>eiJ N(p) integers, and

therefore

t(J)~tiJ-l)S 1 + U -. 1)2 Nij,).
peP

Statement (4) follows. Condition (2) assures that the process may be

repeated r times.

Lemma 3. For every positive number s, there exist small positive numbers

a=ais) and e=eis) such that, for all sufficiently large integers N, the

following conditions hold. Let Q and q be disjoint sets of integers, Q con-

taining N elements, q containing no more than aN elements. Let c be a

function on Z such that |c(n)|^l for n e Q and |c(«)|<e for n $ Q^->q.

Then there exists a trigonometric polynomial g such that llgllz^cn^l and

\Inez c(n)g(n)\>s.

Proof.    Let r be an integer, ^/r>5s. Choose a and £ so that

(5) 0 < a < r-3'2-2,        0 < e < Jr/(20 ■ 3r).

It suffices to find a polynomial g with these properties:

(0 llsll¿«<r>^l,
(ii) g(n)=0 for neq,

(iii) 2{|g(/i)|:/iEßU?}<3',
(iv) 2neQ c(n)g(n)>Jrl4.
It follows from the last three conditions that

2 c(")¿(")
neZ

> (Vr/4) - s3r > Vr/5 > s.
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Require ■N>a~1. Let Q be enumerated: nx>n2>- • ->nN. We shall

construct a sequence of polynomials gk, all satisfying conditions (i) and

(ii), beginning with g0(x) = |c(«1)|e(«1x)/c(«1). Finally, we shall let g

be gk for a suitable value of k (namely, k=r2). Suppose thatg*..! has been

defined. Let Pk_x be the set of its frequencies:

g*-i(x) =   2  ik-ÁPMPx)-

If

(6)

peP.

r(r - 1)   v
r+ '   Z   N(p)<N,

2 Ï6f.,

then Lemma 2, with Pk_x in the role of P, may be applied to obtain a set

Hfc,}i=icö- Let Zi=c(mki)l\c(mki)\ and let

g*W = g»,iW ! - 2^2 - r~32 *izA

+ r-bl2^z¡e(mkjx).

m,iX ™*X>

By Lemma 1, gk is bounded by one since gk_x is. The frequencies of gk

are the integers in the set

Pk = Pk.x U iPk_x + {mki - mki: i < j}) U {mki},

and hence

2 Nip) S   2   Nip)+ 2    2   Nip) + 2(KJ) + aN)
**Pk-l i<ivePk_l i=lpeP

-( 1   +

+ 2

r(r - 1)\   v

2 / pePk_!

J + J-^^  2   Nip) + aN
peP,

<><r_+V + rjr - 1)      rfr + l)(2r + 1)      r(r + 1)

2   Nip) + raN
pePk

12 4

< (r3/2)   2   Nip) + raN.

Since P0 = {nx} and Ninx)SaN, by induction we obtain that 2i>ept Nip)<

r3kaN. By the restriction (5) on the choice of a, and for all N>a~1, (6) is

satisfied for kSr2. Let

h = 2 c(n)Sk(n)-
neQ
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Then 70 = 1 and Ik^il-2r-2)Ik_x + r~i/2. By induction,

Ik ̂  (Vr/2) - (1 - 2r-2)\Qrl2) - 1).

Therefore when k=r2, Ik^.(y/rl2)(l—e~2)>^rj4, so that (iv) is estab-

lished for g=gk. For every k,

2 l*»l = 2 \Sk-i(n)\(l - 2r"2 + r(r - l)/2r3) + r~s/2

á'2ii*-i(»)ia + i/'-)
< (1 + l/r)*.

neZ

When k=r2, this quantity is still less than 3r, and (iii) follows for g=gk-

Lemma 3 is proved.

Proof of Theorem 2. Given s, let a and e be obtained as in Lemma

3,andleta=a/4. Let F={x:e<|/(x)|<l}, £={x:|/(x)|^l}, and suppose

that |F|<(a/4)|£|. We must show the existence of a suitable p.

Consider first the case when |{x e FUF:|x|>í?}|=0 for some finite b.

Both the hypothesis, that |F|<(a/4)|F|, and the desired conclusion are

invariant under the change from/(x) tofo2bx—b), and therefore we may

suppose without loss of generality that £ufç (o, 1]. Let ??>0. There is

a set i/<=(0, 1] which is the union of a finite number of open intervals,

and such that the measure of the symmetric difference £V<7 is less than r¡.

If J is sufficiently large, then

j-i

-. 2*rX* + jij)
J ;=0

I l/l < r¡   for all x e [0, 1/J].

For arbitrary J,

ri riu J-i

Xevu(x) dx = yXEvu(x + JlJ) dx = \E V U\ < r¡
Jo Jo       i=0

and
ri ri/j J-i

%Fix) dx = \       2 Xf(x + JlJ) dx = |F|< (a/4) \E\.
Jo Jo       j=0

Therefore there exists an x such that both

.7-1 J~l

2Xevu(x + Hi) < 2Jr¡   and    2 XA* + j¡J) < J(aß) \E\.
j=0 i=0

Therefore for every sufficiently large /, there is an x such that

1 **
(8) - 2xe(x+jIJ)-\e

•>   3=0

< 3r¡
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and
J-i

(9) - 2 Xf(x + j¡J)
J   3=0

<(a/2)|£|.

Let Q={j:0Sj<J and x+jjJeE}. Then Q has N elements, where

N>J(\E\— 3r¡), so that by taking J sufficiently large, we can make N

sufficiently large in the sense of Lemma 3. By choosing r¡ sufficiently

small and using (8) and (9), we may ensure that the set q = {j:QSj<J

and x+jjJ e F} has fewer than aN elements. By Lemma 3, there is a

polynomial git) = 2, g(j)e(jt) such that 12« g(j)fox+flJ)\>s and \g(t)\ S1
for all t. Let p be the measure that places mass g(j) at x+j\J. Then

\)fdp\>s and 1/2(01=12,¿(j)e(-t(x+jlJ))\=\g(-tlJ)\Sl. Theorem 2 is
proved in the case when |(£u£)\[—b, b]\ =0 for some b, and in particular

for all /with compact support.

Now to prove the theorem in the case of arbitrary/, let £ and F be

defined as before. Given s, let a and £ be such that, whenever

|{x:£<|g(x)|<l}|<a|{x:|g(x)|^l}| and g is measurable and has compact

support, then there is a measure v with finite support such that 11^11 oo = 1

and \$g dv\>3s. Suppose now that |£|<a|£|. For c>0, let V=VC be the

function in A(R) defined so that K(x) = l for |x|<c, K(x)=0 for |x[^2c,

and F(x) is linear on [—2c, — c] and on [c, 2c], Then || V\\A{R)<3. For c

sufficiently large,

|{x:£ < |F(x)/(x)| < 1}|< a |{x: |K(x)/(x)| = 1}|,

and therefore there is a measure v with finite support Y such that ||i»||œ^l

and |J Vfdv\>3s. Let AiY) denote the algebra of restrictions to Y of

elements of AiR), with norm

JglU(F) = SUP i g dp :peM(Y),\\fi\\xSl

Thus || Vf\\MY)>3s. But || F/|U<r)^3||/|U(F). Hence ||/IU(r)>J, so that
there is a measure p e M(Y) such that H^IL^l and \§fdp\>s.

Theorem 2 is proved.
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