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CONVEX MATRIX FUNCTIONS
WILLIAM WATKINS

ABSTRACT. The purpose of this paper is to prove convexity
properties for the tensor product, determinant, and permanent
of hermitian matrices.

Let C" be the vector space of all complex n-tuples with the usual
inner product ( , ) and let H,, be the set of all n by n hermitian matrices.
A matrix A4 in H, is nonnegative if (Ax, x)Z0 for all x in C". If 4 and B
are in H,, we write A= B if A— B is nonnegative. A function f from H,
to H, is monotone if A=ZB implies f(4)=f(B), and convex if
S(AA+(1—=2)B)SAf(A)+(1—=2)f(B), for all 0=A=1.

Lowner [6] introduced the case where f is induced by a real valued
function and m=n. Other authors [2], [4], [S] have analysed this case
further.

ExaMPLE [9]. The inverse function is convex on the set of all invert-
ible, nonnegative matrices in H,,.

ExampLE [4]. The square root function is monotone on the set of all
nonnegative matrices in H,.

Some work has been done on the case where m=1. That is, fis a function
from H, to the real numbers. For example, Marcus and Nikolai [8]
have shown that each member of a class of generalized matrix functions
is monotone. This class of functions contains the determinant and per-
manent. For other results of this type see [1].

In order to state the convexity property for the tensor product, let
my, - - -, m, be r positive integers. It is well known [10, p. 268] that, for
X; y; in C™, i=1,---,r, the decomposable tensors x;®- - -®x, and
$1®+®y, in CN, N=m, - - - m,, satisfy

(x1®. T RX, ) @ ®yr) =(x1,y1)' "(xr’yr)~
If A, is an m; by m; matrix (i=1, - - -, r), then the tensor product ®" 4,
is an N by N matrix satisfying
RTA(X, B+ ®x,) =A%, Q- ® A,x,,

for x, in C™ (i=1,---,r).
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THEOREM 1. If A, and B, are matrices in H,, with0=B,=A,,i=1, -
r,and 0SA<1, then

Q (A4, + (1 — NB) S 1@ A, + (1 — ) & B

DEFINITION (GENERALIZED MATRIX FUNCTION). Let S, denote the
permutation group on n letters and let G be a subgroup of S, with irre-
ducible character y:G—C. For each n by n complex matrix 4=(a;;),
define

d(4) = > 5(0) ﬁ a,;; (sum o in G).

The function d depends on both the subgroup G and its character y.
If G=S, and g(o) is the sign of o, then d is the determinant function.
If G=S, and y=1, then d is the permanent function. For a fuller explan-
ation see [7].

THEOREM 2. If A and B are matrices in H, with0SB=<A and 0<1=1,
then
d(AA + (1 — )B) < 2d(A) + (1 — 2)d(B).

COROLLARY. If A and B are matrices in H, with0SB=A4 and 0=1=1,
then
det(A4 + (1 — A)B) = Adet A 4+ (1 — A)det B
and
per(A4 4+ (1 — 2)B) =< Aper A + (1 — A)per B.

PROOFS.

PrOOF OF THEOREM 1. It is shown in [8] that if 4,, B, are in H,,
and A4,, B, are in H,,, with 0=B, <4, and 0=B,<A,, then 4 ®A2_
B,®B,. Thus the right side of the identity

MA, ® 45) + (1 — 2)(B, ® By) — (A4, + (1 — 1)By)
® ()‘Az + (1 - A)Bz) = }‘(1 - )')(Al - Bl) ® (Az — By)

is nonnegative. Theorem 1 follows by induction.

In order to prove Theorem 2, we develop ideas relating the tensor
product to the generalized matrix function 4.

For each ¢ in S,, define an N by N (N=n") permutation matrix P(o)
by P(o)x;® - ®x,=x,8 * ‘Qx,, for all x;, in C". Notice that
P(ou)=P(0)P(u). Define an N by N matrix T by

X( )Z x(0)P(6) (sum o in G).
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It follows from the orthogonality relations for irreducible characters
[3, p- 219] that T is an idempotent. The matrix T is hermitian since the
complex conjugate of y(o) is x(¢7!) and P(c)*=P(c7?). If A=(a;;) is an
n by n matrix, then ®"* 4 commutes with each P(o) and so it commutes
with T.

Let e;, - - -, e, be the usual basis for C*. Then,

(R"A)Te,® - Qe,Te,® - Re,)
=(THR"ATe,® - Qepe, @ - De,)
=(T(Q"A4)e;, @ - Re,e® --Qe,)
=(TAe;, ® -+ @ Ade,, e, Q- Re,)

1
=)-IC£G—|)ZX(O')(A801®"'®Ae¢m,el®"'®en)

1
= %) 2 1) ] (4e, e

2(1)
=22 dA).
G| (4)

In the second inequality, notice that T*(®" A)T=T(®" 4), since T

and ®" 4 commute and T is a hermitian idempotent. If 4 and B are in
H, and 0=A4=<B and 0=<1=1, then by Theorem 1 we have

R"(A4+(1—-MWB)=i®"4+ (1 —1)Q®"B.
By comparing inner products

R@"AA+ (1 —NB)Te; ®---Qe,, Te,® - ®e,)
and
(AR"4A+ (1 —-1)QR"B)Te; @ R®e, Te,® - ®e,),

we get d(A4A+(1—21)B)<Ad(A)+(1—2A)d(B). The corollary consists of
special cases.
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