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THE ESSENTIAL  SPECTRUM  OF SOME
TOEPLITZ  OPERATORS

KEVIN   F.   CLANCEY  AND   BERNARD   B.   MORREL

Abstract. The localization techniques of Douglas and

Sarason are used to obtain the essential spectrum of the Toeplitz

operator Tv for which q> is the product of a continuous function

and the characteristic function of a measurable subset of the unit

circle. Examples are given of Toeplitz operators with one-

dimensional self-commutator whose essential spectrum is the unit

disk. Using an example of J. E. Brennan, the authors show the

existence of a completely nonnormal, subnormal operator whose

adjoint has no point spectrum.

Introduction. Let p denote normalized Lebesgue measure on the

unit circle Fand let Lv(p)=L'p, ISpSoo, denote the complex Lebesgue

spaces. Let HV<=^LV denote the usual Hardy spaces. If F is the orthogonal

projection of L2 onto 772 and if cp e Lx, then the Toeplitz operator with

symbol cp, denoted Tv, is defined by Tip(f)=P(cpf) for feH2. Toeplitz
operators have been studied extensively in the past two decades. The

interested reader will find a well-written discussion of the current "state

of the art" for Toeplitz operators in [5].

Recall that if the symbol cp is continuous, then the essential spectrum

of F,? is the range of cp. In case cp is only piecewise continuous, the essential

spectrum of Tv is the curve cp# formed by taking the union of the range

of cp (range always means essential range) and the line segments joining

tp(t+) and cpit—) at any point of discontinuity t of cp. This note de-

scribes the essential spectrum of Tv in case cp=foK, where/is continuous

and xe ls the characteristic function of a measurable subset £ of the unit

circle. Our description of the essential spectrum (in Theorem 3 of §2)

should be viewed as an application of the localization result of Douglas

and Sarason [6].

In §3, we use the results of §2 to construct a completely nonnormal

hyponormal Toeplitz operator with self-commutator of rank one whose

essential spectrum is the closed unit disk.

Presented to the Society, January 25, 1973; received by the editors December 1, 1972

and, in revised form, August 2, 1973.    •

AMS (MOS) subject classifications (1970). Primary 47B35.

Key words and phrases. Hyponormal operator, Toeplitz operator, essential spectrum.

(Ç; American Mathematical Society 1974

129



130 K.   F.   CLANCEY  AND   B.   B.   MORREL [May

Finally, in §4, we discuss the existence of point spectrum for the ad-

joint of a hyponormal operator. We use an example of Brennan [1] to

exhibit a nonnormal, subnormal operator whose adjoint has no point

spectrum.

1. Localization. Let X denote the maximal ideal space of F°° and

recall that X has a natural fibration over the unit circle. For every a of

modulus 1, the fibre over a is the set Xx of all homomorphisms of X

that assign the value a to the function %(t) = eH. If cp is in Lx and cp

denotes the Gelfand transform of cp, then cp(Xf) consists of all complex X

which are in the essential range of cp\N(cc) for every neighborhood N(<£)

of a (cf. Hoffman [9, p. 171]).

An operator Fon a Hubert space 2HP is called Fredholm (left-Fredholm)

in case F has an inverse (left-inverse) modulo the ideal of compact

operators on Jf. The essential spectrum of Fis the set

ae(T) = {XeC:T - XI is not Fredholm}.

The following localization result is due to Douglas and Sarason [6]:

Theorem 1. Let cp be a unimodular function in ¿°°. Then T9 is left-

Fredholm if and only if max^x dist(r/»|A'1I, H°°\Xa)< 1.

If/ is continuous and F is a measurable subset of 7, the range of

(foKY restricted to each fibre contains at most two points. In this case

we shall apply the following theorem [3]:

Theorem 2. Suppose cp is a unimodular function in F°° such that for

some a on the unit circle, cp(Xf) is a pair of antipodal points. Then

dist(cp\Xx, r?°°|A;)=L

Actually, Theorems 1 and 2 may be used to describe the essential

spectrum of the Toeplitz operator Fv, if, for every a e T, cp(Xa) is con-

tained in a line segment ¿a. This result has been observed independently

by R. G. Douglas. In this note, however, we shall have no need of this

generality.

2. The essential spectrum. If £ is a measurable subset of the unit

circle, then £ will always denote the essential closure of £, i.e. the set

of all x such that p((x — e,x + e)r\E)>0 for all e>0. The main result

of this section is:

Theorem 3. Let f be continuous on the unit circle and let E be a meas-

urable subset of T, p(E)j±0. Set cf=foE. Then

*ATj = cf+ = {f(t): te £} u {(1 - c)f(t):te E nE',0<cS 1],
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Proof. One of the first results on the invertibility of Toeplitz operators

states that if y» is not invertible in Lx, then Tv is not Fredholm [6]. This

clearly implies that {fot):t e £}<^oeiTtl>). If £n£V 0 , then £' must have

positive measure, so that T9 is not Fredholm.

Next, suppose that 0<c<l and lhat t0eËC\E'. We claim that ).=

(1— c)/(f0) is in oeiTv). Obviously, we may assume that cp — X is invertible

in F°°. A result of Devinatz [4] shows that if y> is invertible in L°°, then

Tv is Fredholm (left-Fredholm) if and only if F„ is Fredholm (left-

Fredholm), where u = ip/\f\. Consider the function hÀ = (cp—X)j\cp — X\.

The range of hx on the fibre over t0 consists of — Xl\?.\ = —f(t0)l\fot0)\ and

/(fn)/|/(r0)|. An application of Theorems 1 and 2 shows that T^ — XI is

not Fredholm.

Finally, suppose that Xj^O is not in cp+. Then A/|A| is not in F and cp

vanishes (almost everywhere) on some neighborhood N of X¡\X\. Thus,

on TV, cp—X=—X (a.e.). For p e T, p^arg X, there is a neighborhood

N(p) such that X is not in the convex hull of the values of g = cp%N{l!¡),

and so, Tg — XI is invertible. We have just observed that TV — XI is locally

Fredholm, and hence, T^ — X.I is Fredholm (Douglas and Sarason [6]),

completing the proof of Theorem 3.

3. Essential spectrum of hyponormal operators. In this section we

use the results of the preceding section to construct examples of hypo-

normal operators whose essential spectrum has nonempty interior.

Recall that an operator F on a Hubert space 3P is hyponormal if its

self-commutator, {T] = T*T— TT*, is nonnegative.

Proposition 1. Let S be an isometry of defect n on a Hilbert space

3t° and suppose that T is an operator on ."#' which satisfies F= T*S. Then

Tis hyponormal and dim(ranlT])Sn.

Proof.    Obviously, T* = S*T. Therefore,

[T] = T*T - TT* = T*T - T*SS*T = F*(7 - SS*)T,

which is nonnegative and which has rank at most n.

Recall that if |at|<l,i=l,2, ■•■ , N, and if

7-1 |ocf| 1 -5<Z

is a finite Blaschke product, then the associated Toeplitz operator Tn is

an isometry of defect N. If cp, fe F°° and / is real-valued, then y>~

icp+Bcp)fe Lx and fB=(cp+Bcp)fB=(<pB+cp)f=f. It follows from

Proposition 1 that Tv is hyponormal and that [Fv,] is at most of rank N.

Similar computations show that the operators F^ are hyponormal when
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cp=foE, where £ is a measurable subset of T, and / is any one of the

functions: r¡(t) = eitl2, —n<t<TT, or x'l(t) = eint, for n=l, 2, ■ ■ ■

The operator Tn deserves further comment. The self-commutator of

Tn is one-dimensional (since r¡ = %r¡), and the spectrum of Tn is the "half-

moon" M={XeC:\X\S\, ReA^O}. The real part of F„ is the Toeplitz

operator F(.„s((/2). The operator Tv(lfiU/2) is absolutely continuous with

uniform spectral multiplicity equal to one (cf. Rosenblum [10]). It is

easily seen that F„ has no reducing subspaces on which F, is a normal

operator. It follows that Tn has a singular integral representation of the

form described in [3].

If a measurable subset F of F is chosen so that F and £' both equal T,

and if we let y=r¡%K, then oATH,) = M. Although this does not follow

directly from Theorem 3 (r¡ is discontinuous), one observes that Theorem

3 is a local result, and this is enough to establish the assertion. The self-

commutator of 7*„ is one-dimensional in this case and the real part of

T„ has uniform spectral multiplicity equal to infinity, so that 71 differs

considerably from the operators considered in [3].

4. Point spectrum of the adjoint of a hyponormal operator. If a hypo-

normal operator F is completely nonnormal, i.e., has no reducing sub-

spaces on which F is normal, then the point spectrum of F is empty.

The same conclusion does not hold for T* (consider the unilateral shift).

Recall that Fon ,3f' is subnormal if there is a Hubert space Jf^Jt and

a normal operator TV on Jf such that NJfçJf and N\jf=T. Every

subnormal operator is hyponormal (the inclusion, however, is proper).

It follows from a result of Stampfli [11, Theorem 5] that if Fis subnormal

and has finite rank self-commutator, then the point spectrum of F* is

nonempty. Two questions come to mind. First, if F is subnormal, is the

point spectrum of F* nonempty? Secondly, if F is hyponormal and has

finite rank self-commutator, is the point spectrum of F* nonempty?

It turns out that both of these questions have negative answers. Recently

Richard Carey and loel Pincus [2] announced examples of hyponormal

operators with one-dimensional self-commutator whose adjoints have

no point spectra. Using the announced results of these authors, we are

able to give necessary and sufficient conditions for a complex number X

to be in the point spectra of the hyponormal Toeplitz operators Fv,

where y> = (z+l)xK—\. Details of this result will appear elsewhere.

Note that these operators Tv have a one-dimensional self-commutator.

It should be pointed out that when 0<p(E)<2n, then the kernel of the

operator Tfx is zero. This follows since ker Fv?í(0) implies log|<r<| is

integrable. For this and other results on point spectra we refer the in-

terested reader to Hartman [7].
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Finally, we show that the first question posed in this section has a

negative answer. To this end, let JCbea compact subset of the plane and

let p be a positive Baire measure supported on X. Further, let 3Î(X)

denote the algebra of rational functions with poles off X, and let R?(dp)

denote the (closed) subspace of L2(dp) spanned by M(X). The restriction

of multiplication by z to 3#2(dp) will be denoted by Az. Then Az is sub-

normal, and, if the support of p is X, then o(Az) = X.

In [1], Brennan considers the case in which X is a "Mergelyan Swiss

cheese", i.e., a compact, nowhere dense subset of the plane obtained by

deleting countably many disjoint open disks D¡ whose radii rt satisfy

2?U'V'C00 frorn the unit disk. If ds is arc length measure on the union

of the unit circle and the boundaries of the disks D¿, then R2(ds)¿¿L2(ds)

(cf. [1, p. 290]).

A closed subspace M<= R2(dp) will be called &L{X) invariant in case M

is invariant under multiplication by every function in í¡#\X).

The following theorem appears as Theorem 2.6 in [1].

Theorem 4. There exists a Swiss cheese X such that R2(ds) has no

proper $(X) invariant subspaces of finite codimension.

The following proposition, when combined with Theorem 4, shows

that there exist nonnormal, subnormal operators whose adjoint has

empty point spectrum.

Proposition 2. Let X be a compact subset of C and let p be a positive

Baire measure supported on X. Then R2(dp) has no proper ¿#(X) invariant

subspaces of finite codimension if and only if there are no proper invariant

subspaces of finite codimension which are invariant under A,.

Proof. Suppose M<^R2(dp) is a proper Az invariant subspace of

finite codimension. We may assume, without loss of generality,- that

dim(R2(dp)QM)=l. Let P denote the orthogonal projection of L2(dp)

onto R2(dp) and suppose that for some a £ X, (z—a)~yM is not a subset of

M. Then the restriction of Az_x to M is not invertible and hence, there is

an/e M which is orthogonal to (z—a)AF Equivalently, there exists a

nonzero fe M such that P(z — i)f=h, where h e R2(dp)QM. Note that

¡19^0, since « is not in the spectrum of Az. Since dim(R2(dp)QM) = 1

and R2(dp)QM is invariant under A*, there exists a ß in X such that

P(z-ß)h=0 and so, P(z-ä.)P(z-ß)f=P(z-ß)P(z-y.)f=0. Noting again

that a £ o(Az), we have P(=-ß)f=0. But P(z-ß)f=(x-ß)f+h where/is

orthogonal to h, a contradiction, and the proof is complete.



134 k. f. clancey and b. b. morrel

References

1. James E. Brennan, Invariant subspaces and rational approximation, J. Functional

Analysis 7 (1971), 285-310.
2. R. W. Carey and J. D. Pincus, On an invariant for certain operator algebras, Proc.

Nat. Acad. Sei. (to appear).

3. Kevin F. Clancey, The essential spectrum of a class of singular integral operators,

Amer. J. Math, (to appear).

4. A. Devinatz,  Toeplitz operators on H2 spaces, Trans. Amer. Math. Soc. 112

(1964), 304-317. MR 29 #477.
5. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press,

New York, 1972.

6. R. G. Douglas and D. E. Sarason, Fredholm Toeplitz operators, Proc. Amer. Math.

Soc. 26(1970), 117-120. MR 41 #4275.
7. P. Hartman, On unbounded Toeplitz matrices, Amer. J. Math. 85 (1963), 59-78.

MR 27 #580.
8. P. Hartman and A. Wintner, On the spectra of Toeplitz's matrices, Amer. J.

Math. 72 (1950), 359-366. MR 12, 187.
9. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern

Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24 #A2844.
10. M.  Rosenblum, A  concrete spectral theory for self-adjoint  Toeplitz matrices,

Amer. J. Math. 87 (1965), 709-718. MR 31 #6127.

11. J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math.

Soc. 117 (1965), 469-476. MR 30 3375.

Department of Mathematics, University of Georgia, Athens, Georgia 30602

■


