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ON FUNCTION SPECTRA

HAROLD  M.   HASTINGS

Abstract. We construct an explicit internal mapping functor

for the homotopy category of CW spectra; this, together with our

earlier smash product, yields a symmetric monoidal closed

category.

Introduction. Boardman [2], [9], Adams [1], and the author [5]

have defined smash products on the homotopy category of CW spectra

which yield a symmetric monoidal category [4]. Further, Boardman and

Heller [6] have used Brown's theorem [6, Theorem 12.2] to define an

adjoint internal mapping functor, and thus show that such a category

is closed. Our construction avoids Brown's theorem.

We thank Alex Heller, William Massey, and lohn C. Moore for

helpful discussions.

1. CW spectra. We gave a definition equivalent to the usual defi-

nition (e.g., [1], [2]) by applying the Adams completion ([1], [6]) to

the following category (in [5]) :

Definition 1. A (C W) prespectrum A' consists of a sequence of pointed

CW complexes {Xn\n^.O}, together with cellular inclusions XnASi^>-Xn+x.

Ps is the category of prespéctra and strict (continuous, pointed) maps.

Here S° = dl, S1 = IIS°, Sn = S1A- ■ -AS1 for n>l, and S"! = pt otherwise.

Denote prespectra with boldface type.

Call a cellular inclusion X' <= X cofinal [1] if the (quadruple) suspensions

of each cell of each Xn are eventually in A".

Definition 2.    Objects of Ad are prespectra, and

(1) Ad(A-, Y) = colim{Ps(A", Y) \ X' cofinal in X}.

For Theorem 5 below we shall need the following equivalent definition

of Ad(A", Y) due to Boardman and Heller.

Call a prespectrum X finite if, for sufficiently large n, Xn is a finite

complex and Xn+x=XnASi. Use (1) to define Ad(A, Y) for finite X.
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Extend this by regarding an arbitrary prespectrum X as the colimit of

its finite subspectra.

Define a smash product A:CW, Ad-»Ad by (À'AAr)ri=A'AA'n; define

homotopy with the cylinder functor /*A?; and let Ht(Ad) be the resulting

homotopy category. See [1] or [5] for details.

We shall also need the category Ws of weak prespectra, which is

defined as follows. In Definition 1, replace "CW complex" by "compactly

generated space" [8], and replace "cellular inclusion" by "continuous

map."

Observe Psc Ws. Extend Ad( ,   ) to a functor on Ad X Ws.

2. Construction of the internal mapping functor MAP. Let X and

Y be prespectra. As a first approximation, define a weak prespectrum

Map(A", Y) as follows. Let S~in be the — 4/z-sphere prespectrum:

(S~in)i = Sii-in; the required inclusions are induced by 54,-4nA54^

ga-in+i for i-\-n_0. Choose a representative smash product on Ht(Ad)

[5, §3]; as in [5], the mapping functor will be independent of this choice.

Let Map(A", F)„=Ad(5'-4riAAr, Y), with the topology induced from the

compactly generated function spaces [8] Map((S~inAX)i, YA. The maps

S4A5-4n-4^5-4n induced the required maps

MaplX Y)n A54-> Map(A, Y)n+X.

Remarks 3. To construct an adjoint to the Boardman-Adams

smash product, replace "£-<">" by "5""," and "S4" by "S1" in the above

construction.

Definition 4. Let MAP(Af, Y) be the (degreewise) realization of

the singular complex [7] of the telescope [5] of Map^, Y).

Extend MAP to a functor Ht(Ad) x Ht(Ad)-*Ht(Ad).

3. The closed structure. We show that MAP is the required internal

mapping functor.

Theorem 5.    Ht(Ad)(ÄAF, Z)^Ht(Ad)(Z, MAP(F, Z)).

Proof.    First observe that, for finite X and Y,

(2) Ad (A" A Y, Z) ^ Ad(A-, Map(F, Z)).

By taking colimits, and using the Boardman-Heller completion (§1),

we obtain (2), and hence its analogue in Ht(Ad), for arbitrary prespectra.

Finally, there are natural weak homotopy equivalences MAP(F, Z)—»■

Map(y, Z); thus

Ht(Ad)(A-, Map(F, Z)) 3* Ht(Ad)(A\ MAP(F, Z))

by [1, Theorem 3.4]. The conclusion follows.
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Corollary 6.   n0 MAP( ,   )^Ht(Ad)( ,   ).

This follows from the isomorphism 7r0^Ht(Ad)(5°, ), which also

shows that Ht(Ad) is normalized [4, p. 491].

The remaining coherence conditions for a closed category [4, p. 491,

Theorem 5.5] are easily verified; their precise statement and proof are

omitted.

Remarks 7. For a weak prespectrum W, tr^ MAP(?, W) is a

generalized cohomology theory, compare the dual relationship between

spectra and generalized homology theories ([9], [1]). An internal mapping

functor on the homotopy category of pointed CW complexes may be

constructed analogously with Definition 3; its existence follows from

Brown's theorem [3].
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