A UNIVERSAL SPACE FOR G-ACTIONS IN WHICH A NORMAL SUBGROUP ACTS FREELY

ROBERT L. RINNE¹

ABSTRACT. A universal space is constructed and it is used to show that $\mathfrak{N}_{+}^{\sigma}(X, A, \psi)$ is computable when G is a finite supersolvable group.

1. **Background.** This paper follows a suggestion of R. E. Stong [3, p. 11]. Let G be a compact Lie group, K a topological group, and $\alpha: G \rightarrow \text{Aut } K$ a homomorphism from G to the group of automorphisms of K. The image of g by α is denoted by α_g . It is required that $(g, k) \rightarrow \alpha_g(k)$ be a continuous map from $G \times K$ into K. Then the following definitions and theorem can be extracted from T. tom Dieck [4].

DEFINITION (1.1). A (G, α, K) -space is a space W with a continuous left operation, μ , of G on W and a continuous right operation, θ , of K on W such that for every $g \in G$, $k \in K$ and $w \in W$ the following holds:

(1.1A)
$$\mu(g, \theta(w, k)) = \theta(\mu(g, w), \alpha_g(k)).$$

DEFINITION (1.2). A (G, α, K) -bundle consists of a principal K-bundle $p: E \rightarrow B$ where E is a (G, α, K) -space and a continuous left operation of G on B such that p is G-equivariant.

THEOREM (1.3) (T. TOM DIECK). Let $p: E \rightarrow B$ be the universal (G, α, K) -bundle. Then if $\pi: V \rightarrow W$ is any numberable (G, α, K) -bundle, there is a bundle map $f: V \rightarrow E$ which is (G, K)-equivariant. Any two such bundle maps are homotopic through (G, K)-maps.

2. The universal space. Hereafter suppose that G is a finite group. Let (V, μ) be a G-manifold with boundary. Let K be a normal subgroup of G such that $\mu|_{K\times V}: K\times V\to V$ is free. Define $\alpha: G\to \operatorname{Aut}(K)$ by $g\mapsto (k\to gkg^{-1})$. Define a right action $\theta\colon V\times K\to V$ by $\theta(v,k)=\mu(k^{-1},v)$. This is a K-action and thus K acts principally. Since K is normal, one can verify condition (1.1A). Thus (V,μ) is a (G,α,K) -space.

PROPOSITION (2.1). The orbit map $\pi: V \rightarrow V/K$ determines a numberable (G, α, K) -bundle.

Received by the editors May 23, 1973 and, in revised form, July 24, 1973. AMS (MOS) subject classifications (1970). Primary 57D85, 55F15.

¹ The author was supported by the United States Atomic Energy Commission.

PROOF. Since K acts freely on V one has a principal K-bundle. With the induced action of G on V/K, π is G-equivariant. Therefore, it is a (G, α, K) -bundle. Since V is completely regular and K is a compact Lie group it follows from the work of Palais [2] that the bundle is locally trivial. Furthermore, since V/K is a manifold with boundary the bundle is numberable. \square

By Theorem (1.3) there is a (G, K)-equivariant classifying map $f: V \rightarrow E$. However, K does not necessarily act freely from the left on E. T. tom Dieck points out that G, α , and K give a $G \times_{\alpha} K$ semidirect product defined by $(g, k)(g', k') = (gg', \alpha_{g'}(k)k')$. Also $G \times_{\alpha} K$ operates continuously from the left on V by $\psi((g, k), v) = \theta(\mu(g, v), k)$. Since f is (G, K)-equivariant the following diagram commutes:

$$(G \times_{\alpha} K) \times V \xrightarrow{\psi} V$$

$$\downarrow^{f}$$

$$(G \times_{\alpha} K) \times E \xrightarrow{\psi'} E$$

Thus the classifying map $f: V \rightarrow E$ is (G, K)-equivariant on $(G \times_{\alpha} K)$ -actions.

Let $F_K(E)$ denote the fixed set of E by the diagonal action of K where K is thought of as contained in $G \times_{\alpha} K$ as the pairs (k, k). The above remarks show that $f(V) \subseteq F_K(E)$.

PROPOSITION (2.2). Suppose E is a (G, α, K) -space, then $F_K(E)$ is a (G, α, K) -space.

PROOF. Note that K is normal in $G \times_{\alpha} K$. Let $y \in F_K(E)$. Suppose that $g \in G$ so $(g, 1) \in G \times_{\alpha} K$. Then with a slight corruption of notation one has that

$$(k, k)(g, 1)y = (g, 1)(g, 1)^{-1}(k, k)(g, 1)y = (g, 1)(\bar{k}, \bar{k})y = (g, 1)y.$$

So $F_K(E)$ is closed under left action by G. Similarly it is closed under right action by K. \square

Suppose that $\mu'(k, e) = e$ for some $e \in F_K(E)$. Then $e = \psi'((k, k), e) = \theta'(\mu'(k, e), k) = \theta'(e, k)$. But E is a principal K-bundle and so K acts freely from the right on E. Thus K acts freely from the left, as a subgroup of G, on $F_K(E)$.

In summary one has the following theorem.

Theorem (2.3). There exists a universal space, $F_K(E)$, for G-actions in which a normal subgroup K of G acts freely, and a G-equivariant classifying map $f:(V, \mu, K \text{ free}) \rightarrow (F_K(E), \tilde{\mu}, K \text{ free})$. Any two such maps are equivariantly homotopic through G-maps.

3. An application. A family \mathfrak{F} in G is a collection of subgroups of G such that: (i) if $H \in \mathfrak{F}$ and $K \subseteq H$ then $K \in \mathfrak{F}$, and (ii) if $H \in \mathfrak{F}$ and $g \in G$ then $gHg^{-1} \in \mathfrak{F}$. The collection of all subgroups of G, denoted \mathscr{All} , is a family. A G-manifold with boundary, (M, μ) , is an \mathfrak{F} -free action if for every $x \in M$, the isotropy group of G at x, $G_x = \{g \in G | \mu(g, x) = x\}$, is in \mathfrak{F} .

DEFINITION (3.1). Let (X, A, ψ) be a pair of topological spaces with G-action (given by $\psi: G \times X \to X$ with $\psi(G \times A) \subset A$). A G-bordism element of (X, A, ψ) is an equivalence class of triples, (M, μ, f) , where (M, μ) is a compact G-manifold with boundary and $f: (M, \partial M) \to (X, A)$ is a G-equivariant map. Two triples, (M, μ, f) and (M', μ', f') , are equivalent if there exists a quadruple (V, V^+, ω, F) such that: (i) (V, ω) is a compact G-manifold with boundary, V^+ is a G-invariant submanifold, and $F: (V, V^+) \to (X, A)$ is a G-equivariant map, (ii) $\partial V = M \cup M' \cup V^+$ with $\partial V^+ = (M \cup M') \cap V^+$, $M \cap M' = \emptyset$, $M \cap V^+ = \partial M$ and $M' \cap V^+ = \partial M'$, and (iii) F restricts to f on M and to f' on M', and ω restricts to μ on M and to μ' on M'. Under the operation induced by disjoint union the classes determined by (M, μ, f) for which the dimension of M is n, form a group denoted $\mathfrak{N}_n^G(X, A, \psi)$.

DEFINITION (3.2). Let \mathfrak{F} be any family in G. Then if in Definition (3.1) one requires the compact G-manifolds with boundary to also be \mathfrak{F} -free actions one has an \mathfrak{F} -free bordism element of (X, A, ψ) . As before, the equivalence classes determined by compact G-manifolds with boundary of dimension n, under the operation induced by disjoint union form a group, denoted $\mathfrak{N}_n^G(\mathfrak{F})(X, A, \psi)$.

Taking the direct sum over n in the above definitions one obtains the abelian groups, $\mathfrak{N}_*^G(X,A,\psi)$ and $\mathfrak{N}_*^G(\mathfrak{F})(X,A,\psi)$. If N is a closed manifold and one lets $N\cdot (M,\mu,f)$ be equal to $(N\times M,1\times \mu,f\circ\pi_M)$ then $\mathfrak{N}_*^G(X,A,\psi)$ and $\mathfrak{N}_*^G(\mathfrak{F})(X,A,\psi)$ are modules over the unoriented bordism ring \mathfrak{N}_* . An equivariant map $\Gamma:(X,A,\psi)\to(Y,B,\chi)$ induces homomorphisms

$$\begin{split} &\Gamma_* = \, \mathfrak{N}^G_*(\Gamma) \colon \mathfrak{N}^G_*(X,\,A,\,\psi) \to \, \mathfrak{N}^G_*(Y,\,B,\,\psi), \quad \text{and} \\ &\Gamma_* = \, \mathfrak{N}^G_*(\mathfrak{F})(\Gamma) \colon \mathfrak{N}^G_*(\mathfrak{F})(X,\,A,\,\psi) \to \, \mathfrak{N}^G_*(\mathfrak{F})(Y,\,B,\,\chi) \end{split}$$

by sending (M, μ, f) to $(M, \mu, \Gamma \circ f)$.

Let K be a normal subgroup of G. The collection $\mathfrak{F}_1 = \{L \subseteq G | L \cap K = \{1\}\}$ is a family. A G-manifold, (M, μ) , is an \mathfrak{F}_1 -free action if and only if K acts freely on M.

The following theorem is an extension of a proposition due to Conner and Floyd [1, (19.1)].

THEOREM (3.3). The \mathfrak{F}_1 -free bordism group $\mathfrak{N}^G_*(\mathfrak{F}_1)(X, A, \psi)$ is naturally isomorphic to the G/K-bordism group

$$\mathfrak{N}_{*}^{G/K}((X\times F_{K}(E))/K,(A\times F_{K}(E))/K,(\psi\times\tilde{\mu})^{*}).$$

PROOF. Let (M, τ, f) represent an element of $\mathfrak{N}^G_*(\mathfrak{F}_1)(X, A, \psi)$. So K acts freely on M and there is the classifying map $c: M \to F_K(E)$. Define $\pi_{f \times c}: M \to X \times F_K(E)$ by $m \mapsto (f(m), c(m))$. $\pi_{f \times c}$ is G-equivariant. K acts freely on $X \times F_K(E)$. $A \times F_K(E)$ is closed under left action by G. Now $\pi_{f \times c}$ induces a G/K-equivariant map $\tilde{\pi}_{f \times c}: M/K \to (X \times F_K(E))/K$. Thus to (M, τ, f) corresponds the triple $(M/K, \bar{\tau}, \bar{\pi}_{f \times c})$. This relation is well defined and so determines a homomorphism, ρ .

The inverse to ρ is constructed as follows. Let (N, η, h) represent an element in $\mathfrak{N}_*^{G/K}((X\times F_K(E))/K, (A\times F_K(E))/K, (\psi\times\tilde{\mu})^*)$. Let $\pi\colon X\times F_K(E)\to (X\times F_K(E))/K$ be the orbit map, and let π_X be projection onto X. Consider the following diagram where \tilde{N} is the induced space and \tilde{h} is the map induced by h:

$$\tilde{N} \xrightarrow{\tilde{h}} X \times F_K(E) \xrightarrow{\pi_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$N \xrightarrow{h} (X \times F_K(E))/K.$$

Note that \tilde{N} is a compact G-manifold with boundary where G acts on \tilde{N} by $\theta(g, (n, (x, e))) = \eta(gK, n), (\psi(g, x), \tilde{\mu}(g, e))$. Furthermore K acts freely on \tilde{N} , \tilde{h} is G-equivariant, and $\tilde{h}(\partial \tilde{N}) \subseteq A \times F_K(E)$. Thus to (N, η, h) associate the triple $(\tilde{N}, \theta, \pi_X \circ h)$. It is immediate that this correspondence is a homomorphism inverse to ρ .

Given an equivariant map $\Gamma: (X, A, \psi) \rightarrow (Y, B, \chi)$ it follows immediately from the definitions of Γ_* that the above isomorphism is natural. \square

4. Computing unrestricted bordism groups. R. E. Stong [4, §9] defines the equivariant bordism groups $\mathfrak{R}_*^G(\mathfrak{F})(X,A,\psi)$ to be computable if they are naturally isomorphic to a direct sum of ordinary unoriented bordism groups $\mathfrak{R}_{*-k}(Y,B)$, with dimension shifts, as functors on the category of G-pairs. In [4, (9.2)] he shows that if G is nilpotent, then $\mathfrak{R}_*^G(\mathscr{All})(X,A,\psi)$ is computable. Theorem (3.3) allows one to immediately extend two of Stong's propositions [4, (8.5) and (3.6)]. One then can obtain the following result.

Theorem (4.3). If G is a finite supersolvable group, $\mathfrak{N}^G_*(\mathscr{A}\ell\ell)(X,A,\psi)$ is computable.

PROOF. If G is a finite supersolvable group then it has a normal series $G = B_0 \supset B_1 \supset \cdots \supset B_n = 1$ such that each factor group B_{i-1}/B_i is cyclic of

prime order, so B_{n-1} is normal of prime order. Now applying the extended Stong propositions one has that the unrestricted G-bordism group of (X, A, ψ) is isomorphic to a direct sum of unrestricted (G/B_{n-1}) -bordism groups of some G-pairs. Since subgroups and factor groups of supersolvable groups are supersolvable, G/B_{n-1} is supersolvable. \square

Note. This proves computability in a "nice" sequential way. The result in [4, §9] for 2 nilpotent groups is stronger yet.

REFERENCES

- 1. P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750.
- 2. R. S. Palais, *The classification of G-spaces*, Mem. Amer. Math. Soc. No. 36 (1960). MR 31 #1664.
- 3. R. E. Stong, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc. No. 103 (1970). MR 42 #8522.
- 4. T. tom Dieck, Fasserbündel mit Gruppenoperation, Arch. Math. (Basel) 20 (1969), 136-143. MR 39 #6340.
- U.S. Atomic Energy Commission, Division of International Security Affairs, Mail Station C-111, Washington, D.C. 20545