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ZERO-ONE  LAWS  FOR  NON-GAUSSIAN  MEASURES

JOEL   ZINN1

Abstract. Some zero-one laws are proved for non-Gaussian

measures on the space R°°. Also included is a characterization of the

generating Hubert space of an abstract Wiener space in terms of

the subgroups of positive measure.

1. Introduction. In their 1970 paper [4] B. Jamison and S. Orey

proved the following result: If p is the product normalized Gaussian

measure on the space (J?°°, 3ftœ) and G is a completion measurable sub-

group of Rx, then p(G) = 0 or 1. They then applied this result to extend

a theorem of R. H. Cameron and R. E. Graves [1]. Namely, they prove

the following.

Theorem. Let p be a mean-zero Gaussian measure on the space C(I)

of continuous functions on the unit interval. If G is a completion measurable

subgroup ofC(I), then p(G)=0 or 1.

Using different techniques G. Kallianpur [6] showed that the result

holds for Gaussian measures with continuous covariance functions on a

measurable space (X, ¿ß(X)), where X is a linear space of real-valued

functions over a complete separable metric space, and .^(X) is the ct-

algebra generated by the cylinder sets. However, Kallianpur's result

holds only for completion measurable r-modules and 38(X) measurable

subgroups. In 1971 N. Jain [2] showed that Kallianpur's result holds for

completion measurable subgroups.

In §3 we continue this investigation for certain non-Gaussian measures

on (/?°°, ,^°°) and we apply this to measures on topological vector spaces.

In §4 we give a characterization of the generating Hubert space of an

abstract Wiener space in terms of the measurable subgroups of positive

measure, and we also give some examples.

2. Notation and preliminaries. In this section Ä°° is the countable

product of the real line with the product topology, and ^°° is the c-field

of Borel subsets of Ä°°. For a probability measure /j on F, 3§™ will

denote the //-completion of ¿#°°.
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Let ttv/jT^Ä00 be defined by Trn(xx, x2, ■ ■ -) = (xx, ■ ■ ■ , xn, 0, 0 ■ ■ ■),

and let Rn=-trniRœ). R" will be given the subspace topology (the usual

Euclidean topology) and 38n will denote the associated Borel ff-field.

Lebesgue measure on R" will be written as /n(n). For a probability measure

p on (Rx, ¡Mx) and cp a measurable mapping of (R°°, á?00) to the measur-

able space (Y, <€), we define the probability measure p" on (Y, '%) by

pv(C)=p(q>-1(C)) for all C 6 i?. In the case cp(x) = x+y for some y e Rx,

p* will be written simply as py, i.e., py(E)=p(E—y).

For subgroups H and G of R°°, HSG will mean that H is a subgroup

of G. For S^RX, (S) will mean the group generated by S. Of particular

importance to us is the subgroup U£-i^B> which will be denoted by

/„•

Finally, let ^# be the set of probability measures on (Rx, ¿fl™) and

define:

ex = {peJ(:Ge08^,GS RK,p(G) > 0 => G ^ /„},

ê2 = {p BJK-.p"" « mU) for all n),

<g3 = {¡x e ^#:given any compact setKç R^, N a positive

integer, and {x¡} a sequence in ÄA converging to

0, we have /¿(K — x¿) -*■ piK)},
and

8P = \peê2:p = fjft, where //¿is a probability measure on the real line .

3. In this section we describe certain properties of the collections

S i and 3P, and show how the study of these collections relates to the zero-

one law for subgroups.

Theorem 1.   ê^Sx.

Proof. Assume that p e S3 and that G is a ^"-measurable subgroup

of Ä°° with piG)>0. Let {zx:xeA} be a complete set of coset represen-

tatives for G in A00, i.e., {G—za} are pairwise disjoint and \JxeA (G—za) =

Ä00. Hence there exists a countable set {«.t}ÏLx=A such that a e/4\{a,-}S=1

implies p(G-zf) = 0. If we let G = G+(za.: I Si<co), it follows that

p(G—z)=0 for all z <£ G.

Now, let Hn=GC\Rn. Since G e ßSm, H is a Borel set in Ä", and hence

H„9^Rn implies m^(Hn)=0. Therefore there exists a sequence {y¡} in

Ä"\//K such thaty¡-+0. Choose a compact set KçG with Ja(/v)>0. Then

p(K—yA-t-piK^O. Therefore there exists r such that 0<//(Ar—_yr)^

p(G— yT), a contradiction. We now have R"çG. This implies that there

exists ze(za.:l^/'<oo) such that w<"»((C-z)nA")>0. But then

ffl'"'((G+z)n'/î")>0, since (G-z)nR" = -[(G+z)nRn]. Therefore Gn

R"^[(G+z)r\R"]+[(G—z)r\R"] contains an open set in Rn.  Hence
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G^R". For CeJ*  with p(G)>0, choose a compact set LçG with

p(L)>0, and consider the ¿^-measurable subgroup (L)SG.

We record the last sentence of the proof as

Corollary 1.1. Let p be a regular, tight Borel measure on a Hausdorff

topological group X. If G is a completion measurable subgroup of X with

positive p-measure, there exists a o-compact subgroup H of G with positive

p-measure.

This fact will be used implicitly in the proofs of Theorem 2(b), (c),

and (f).

Corollary 1.2.    SP<^6X.

Proof.    For // e 01, let i„ = dp""ldm^"K Then for A'compact

l/':<7TBK) - p'^nK - x)\ < [\Uy -x)- Uy)\ mW (dy)

for all x e R".

Therefore, since A'=P]^=1ir^1 iir niK)) and p e SP, we have, for x e Rf1,

\piK - x) - p(K)\ sj\Cx(y - x) - ïx(y)\ m(N) (dy).

Hence p(K—x)~+p(K) as x-*0 in ä\

Corollary 1.3.    If p e ?/, G<R' , and G e 38™, then p(G)=0 or 1.

Proof. If p(G)>0, we have, C^/0, since p e <fx. But this implies

that G is a tail event. Hence p(G)=l.

Since in (Ä", £8a, mm) a measurable subgroup is either R" or has

Lebegue measure zero, the same is true for measures absolutely continuous

with respect to /»/<"'. In Rx, if the tail cr-field of the coordinate mappings

is a zero-one field for a measure p, and if a group contains /0, then the

group will have //-measure zero or one. In view of these facts a reasonable

class of measures to consider is <f2. In the theorem below we relate some

of the properties of the S¿.

Theorem 2.    (a) ¿¡"ç êx C\â2 r\S3. For /=1, 2 :

(b) p e ai, v«p implies v e S\.

(c) p,ve (fi, implies p*ve 6%.

(d) S i is convex.

(e) S'i is closed in the total variation norm,

if) p~pfor all ael0 implies p e tA.

(g) é'3^é1r\S2.
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(h) Suppose that cp:Rx^.Rx is measurable, linear, and q>(l0) = l0. Then

p e€x implies p* e ëx.

(i) p* pe <ox, implies p e Sx.

Proof,    (a), (b), (d), (e), and (h) are clear.

(c) Let p and v e êx. Suppose that p * v((7)>0. Therefore there exists

xeRœ such that p(G-x)>0. Let G = G+(x). Then p(G)>0 and hence

G^.l0. As in Theorem 1 this implies G±i/U. The assertion for S2 is clear,

since (p * vyn=p'n * vn".

(f) Suppose that pa and p are mutually absolutely continuous for all

ael0, and p(G)>0. If G^Rn, then Hn = GC)R" has Lebesgue measure

zero. Therefore there exists an uncountable number of distinct cosets

{Hn—xa}xeA of Hn in Rn. But then {G—xx}xeA are distinct cosets of G

in Ä00. Since px>~^p for ote A, we have p(G—xj>0 for all ote A, a

contradiction. The assertion for S2 follows from the proof of Theorem

5 of [9].
(g) ê3<^êx is the statement of Theorem 1. Let p e c?3, and let C be a

compact subset of R>. Given e>0 there exists a compact set K^RX

such that K^w^iC) and piK^pi^iC^—e. Let pl¡ be defined on 0S*

by p°x>(A)=p°>(A—x). Since as x^O in R>, px=>p, we have

pi-rr-\C)) ^ lim sup p"fC - x) = lim infp*'(C - x)
x->0 z->0

^ lim piK - x) = piK) ^ pi-trfiC)) - e.

Therefore

lim p^iC - x) = p"iC).
x->0

Now pn' = vx + v2 where vx<£m{i), v2\_m{i), and vx±_v2. Hence v2(C—x)^>-

v2(C) as x->-0 in R' for every compact set C. If v2=A0, then there exists a

compact set L^R> such that j<2(L)>0 and m(i)(L)=0; but then by

Fubini's theorem we see that v2(L—x)=0 for almost all x[dmu>]. Therefore

v2(L)=0, a contradiction. Therefore p*><£mf.

(i) Suppose that p * p e cfx, and p(G)>0. Then

// * //(G) =   p(G — x)p(dx) ^    p(G — x)p(dx) = p2(G) > 0.

Therefore G^/0. Hence p e Sx.

Remarks. (1) In order to show p * v eS\, we needed only that p

or v e Sx.
(2) Whenever one of the above properties holds for S2, it also holds

for Sx. It would be interesting, therefore, to prove or disprove "ê2<^ëx".

(3) Most of the proofs in the above theorem hold if instead of Rx,
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we consider the space fl^i G¡, where G, is a connected, uncountable,

abelian topological group with a regular Haar measure.

Theorem 3. Let p be a regular tight probability measure on a real

Hausdorff topological vector space X, with nontrivial dual X*. Suppose

that there exists {A,)^X* and {x¡}f=x<^X such that:

(1) The tail afield of {A,} is a zero-one field for p.
(2) For p-almost all x, x= ~^JLX Ai(x)x¡.

(3) IfY-.X^R™ is defined by Y(x) = (Aj(x))JLx, then pr e Sx.
Then if G is a completion measurable subgroup of X, we have p(G) = 0 or 1.

Proof. Let F={x el:i=yf=1 Aj(x)xs}. Then £ is a subgroup of X

of//-measure 1. Now suppose that G is a completion measurable subgroup

of X with positive //-measure. Since p is regular and tight, we may choose

a compact set K contained in Ei^G such that //(A)>0. Let A"0 = AU

(-A)U{0} and K„+1=*Kn+K„. Then H={J™=xKn is a subgroup of

G(~\E with positive //-measure. Since Y is continuous, Y(H) is ff-compact

and hence measurable. But p1 (Y(H))>0, and therefore Y(H)^.I0. Hence

pr(Y(H))=l by (1). Since H=EC\Y^Y(H), we have that p(G)^p(H)=l.

The next corollary follows from Theorem 3 and Theorem 2(f).

Corollary 3.1. Let peJ/. Suppose that the following conditions

hold:

(i) pn'—p for all a e l0, and

(ii) the a-field generated by the coordinate mappings is trivial with

respect to p.

Then ifGe @™ and GSRX, we have /z(G) = 0 or 1.

Proposition 3.2. Let q :RX~*RX be linear and measurable, and let

pe.ïï. Suppose that for every d8x-measurable subgroup G of Rx, we

have p(G) = 0 or 1. Then for every J#firnieasurable subgroup G of R°°, we

have p"(G) = 0 or I.

Proof. By Corollary 1.1 we may consider .^"-measurable subgroups.

The rest of the proof is trivial.

In the next theorem we show that similar results hold for semigroups.

Theorem 4. Let p be a probability measure on a topological group X

such that:

(1) for every A in the Borel a-field, p(A)=p(A~1), where A~x =

{a~x:a e A}, and

(2) every completion measurable subgroup of X has p-measure 0 or 1.

Then if X is a completion measurable subsemigroup of X of p-measure

greater than \, we have p(S)=l.

Proof. Let S be as above. If S-1 = {x^1:x e S}, then G=Sr\S~1 is a

subgroup of X of positive measure. Therefore l=p(G)Sp(S).



184 JOEL  ZINN [May

4. Examples, (a) Let // be a mean-zero Gaussian measure on a

real, separable Banach space (B, \\ ■ \\IS). It is shown in [5] and [8] that

there exists a Hubert space, H, contained in B, such that p is induced by

the canonical normal distribution on H. If {q>¡}f=x is a complete ortho-

normal system for H contained in B*, then for //-almost all x in B,

lim
N

N

- 2 (*' v^i = 0
li

(see [3] and [7]). Since {(x, q>,)}f=x is a sequence of independent Gaussian

random variables with mean zero and variance 11^11^=1, the hypotheses

of Theorem 3 are satisfied.

In this case we can even say more.

Theorem 5. In the above setting H=C] G, where the intersection is

taken over all completion measurable subgroups, G, of positive p-measure.

Proof. As before let Y:B-*RX be defined by T(x) = ((x, y,))^, and

E={x e B:limlX\\x— 2}=i ix, <ps)q> j\\B=0}. Since (pr)x~pv if and only if

a e /2, we see by the proof of Theorem 2(f), that any .^"-measurable

subgroup, G, of/?" with /zr(G)>0, contains 12.

Now, for any y e Ä", let My=(x 6Ä":\2.7-iYixi\<a0}- «t is easy to

see that pr(My)>0 if and only if y e l2. Let M=(~)yel;¡ My. By the Banach-

Steinhaus theorem M = L. However,

D Y~\My) C\E= Y-\l2) OF = H.
■yen

Hence we are done.

(b) Let {iv/JLi be a sequence of independent random variables with

densities, and let p be the measure on /?" induced by {£,}," x. Now fix a

nonnegative integer m and real numbers a0, • ■ ■ , am (not all zero). Let

fei — Z, ai~l%i+m+l-i

fory'^1, and v the measure on Ä" induced by {£,},",. Define r/»:Ä"-*Ä°

by
m+l

[<K*)L- = 2 ai-lXi+m+l-i-

It is easy to see that cp(l0) = l0 and v=p(p. Hence any ^"-measurable

subgroup of Ä" with positive r-measure contains /„. Hence by Proposition

3.2, any ^"-measurable subgroup has v-measure zero or one.

(c) Let {fj,"i be a Markov chain with state space the real line, and

let p be the measure on Ä" induced by {f3}," x. Assume that peS2 and
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the tail ff-field is trivial. Then using an argument similar to that of Corol-

lary 1.2, we can show that p e S3, and hence p e S\. Therefore, since the

tail ff-field is trivial, measurable subgroups satisfy the zero-one law with

respect to p.
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