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ZERO-ONE LAWS FOR NON-GAUSSIAN MEASURES
JOEL ZINN!

ABSTRACT. Some zero-one laws are proved for non-Gaussian
measures on the space R®. Also included is a characterization of the
generating Hilbert space of an abstract Wiener space in terms of
the subgroups of positive measure.

1. Introduction. In their 1970 paper [4] B. Jamison and S. Orey
proved the following result: If u is the product normalized Gaussian
measure on the space (R*, #*) and G is a completion measurable sub-
group of R, then u(G)=0 or 1. They then applied this result to extend
a theorem of R. H. Cameron and R. E. Graves [1]. Namely, they prove
the following.

THEOREM. Let u be a mean-zero Gaussian measure on the space C(I)
of continuous functions on the unit interval. If G is a completion measurable
subgroup of C(I), then u(G)=0 or 1.

Using different techniques G. Kallianpur [6] showed that the result
holds for Gaussian measures with continuous covariance functions on a
measurable space (X, 4(X)), where X is a linear space of real-valued
functions over a complete separable metric space, and #(X) is the o-
algebra generated by the cylinder sets. However, Kallianpur’s result
holds only for completion measurable r-modules and Z(X) measurable
subgroups. In 1971 N. Jain [2] showed that Kallianpur’s result holds for
completion measurable subgroups.

In §3 we continue this investigation for certain non-Gaussian measures
on (R®, #A*) and we apply this to measures on topological vector spaces.
In §4 we give a characterization of the generating Hilbert space of an
abstract Wiener space in terms of the measurable subgroups of positive
measure, and we also give some examples.

2. Notation and preliminaries. In this section R® is the countable
product of the real line with the product topology, and #* is the o-field
of Borel subsets of R*. For a probability measure u on R%, gjf will
denote the u-completion of A%,
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Let 7,:R®—R* be defined by m,(x;, x5, - - )=(xy, =+ +, x,,0,0- ),
and let R"=m,(R®). R" will be given the subspace topology (the usual
Euclidean topology) and %™ will denote the associated Borel o-field.
Lebesgue measure on R” will be written as m™. For a probability measure
won (R®, #%) and ¢ a measurable mapping of (R®, #%) to the measur-
able space (Y, %), we define the probability measure u® on (Y, %) by
u?(C)=u(p~(C)) for all C € . In the case p(x)=x+y for some y € R®,
u? will be written simply as u,, i.e., u, (E)=u(E—y).

For subgroups H and G of R*, H=<G will mean that H is a subgroup
of G. For SSR*, (S) will mean the group generated by S. Of particular
importance to us is the subgroup J;-, R", which will be denoted by
lo.

Finally, let .# be the set of probability measures on (R*, #*) and
define:

& ={ueM:GeB* G R uG)>0=G=1)
&y = {pueM:p»L&m™ for all n},

&3 = {u € M :given any compact set K = R®, N a positive
integer, and {x;} a sequence in R" converging to
0, we have (K — x;) > u(K)},
and

P={peb,y:u= [ ] g, wherep, is a probability measure on the real line .
i=1

3. In this section we describe certain properties of the collections
&, and 2, and show how the study of these collections relates to the zero-
one law for subgroups.

THEOREM 1. &3S 6.

PrOOF. Assume that u € &3 and that G is a #*-measurable subgroup
of R® with u(G)>0. Let {z,:« € A} be a complete set of coset represen-
tatives for G in R®, i.e., {G—z,} are pairwise disjoint and |J,c4 (G—2z,)=
R*. Hence there exists a countable set {«;}>,< A such that « € A\{«};2,
implies u(G—z,)=0. If we let G=G+<zai: 1=i< ), it follows that
u(G—2)=0for all z ¢ G.

Now, let H,=GNR". Since G € #*, H is a Borel set in R", and hence
H,R" implies m™(H,)=0. Therefore there exists a sequence {y,} in
R™\H,, such that y,—~0. Choose a compact set K< G with x(K)>0. Then
u(K—y,)—>u(K)>0. Therefore there exists r such that 0<u(K—y,)=
u(G—y,), a contradiction. We now have R"< G. This implies that there
exists z €(z,,:1 <i<oo) such that m™((G—z)NR")>0. But then
m™((G+z) "NR™) >0, since (G—z) NR"=—[(G+2) NR"]. Therefore GN
R*2[(G+z)NR"]+[(G—2z)NR"] contains an open set in R". Hence
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G2R". For Ge #; with u(G)>0, choose a compact set LS G with
#(L)>0, and consider the #*-measurable subgroup (L)=G.
We record the last sentence of the proof as

COROLLARY 1.1. Let u be a regular, tight Borel measure on a Hausdorff
topological group X. If G is a completion measurable subgroup of X with
positive u-measure, there exists a o-compact subgroup H of G with positive
u-measure.

This fact will be used implicitly in the proofs of Theorem 2(b), (c),
and (f).

COROLLARY 1.2. Z<{,.

Proor. For pe Z, let {,=du™[dm™. Then for K compact

s n

lw«mm—MWmK—xn;ﬁMy—m—cwmw“mw

for all x e R™.
Therefore, since K=(",_; 7 (7, (K)) and u € 2, we have, for x € RY,

(K = 20 = 0] = [ 14y = %) = L) m™ ()
Hence u(K—x)—>u(K) as x—0 in R".
COROLLARY 1.3. Ifue P, GER®, and G € B, then u(G)=0 or 1.

Proor. If u(G)>0, we have, G=/,, since u € &,. But this implies
that G is a tail event. Hence u(G)=1.

Since in (R", #", m™) a measurable subgroup is either R" or has
Lebegue measure zero, the same is true for measures absolutely continuous
with respect to m™. In R®, if the tail o-field of the coordinate mappings
is a zero-one field for a measure u, and if a group contains /,, then the
group will have u-measure zero or one. In view of these facts a reasonable
class of measures to consider is &,. In the theorem below we relate some
of the properties of the &.

THEOREM 2. (a) <& NE,NE 5. For i=1,2:
(b) ue &, v&u impliesv e &,.

) u,ve&,, impliesuxveds,

(d) &, is convex.

(e) &, is closed in the total variation norm.

() p~u for all a € Iy implies u € &;.

(8) 656,106,
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(h) Suppose that ¢:R*—R™ is measurable, linear, and @(ly)=1I,. Then
u € &y implies u* € &,.
(i) p*xpuedé,, implies ueé&,.

ProoF. (a), (b), (d), (e), and (h) are clear.

(c) Let x4 and » € &,. Suppose that u » »(G)>0. Therefore there exists
x € R® such that u(G—x)>0. Let G=G+(x). Then u(G)>0 and hence
G=1,. As in Theorem 1 this implies G=/,. The assertion for &, is clear,
since (u * ¥)'n=p"n x v"n,

(f) Suppose that u, and x are mutually absolutely continuous for all
a€ly, and u(G)>0. If G R*, then H,=GNR" has Lebesgue measure
zero. Therefore there exists an uncountable number of distinct cosets
{H,—x}seq of H, in R". But then {G—x,},.4 are distinct cosets of G
in R®. Since u, ~u for « € A, we have u(G—x,)>0 for all x€ 4, a
contradiction. The assertion for &, follows from the proof of Theorem
5 of [9].

(g) £3= &), is the statement of Theorem 1. Let u € &5, and let C be a
compact subset of R’. Given £>0 there exists a compact set K< R”
such that K< 77 (C) and u(K)Zpu(n7'(C))—e. Let uy be defined on %
by uz/(A)=u"(4—x). Since as x—0 in R/, u,=u, we have

w(77H(C)) = lim sup p"(C — x) = lim inf u"(C — x)
z—=0 x—0
2 lim u(K — x) = p(K) = w(=7'(C)) — e.

x—0

Therefore

lim u"(C — x) = u"(C).

x—0
Now u"i=v,+v, where »,Km", v, | m), and », | v,. Hence v,(C—x)—
,(C) as x—0 in R’ for every compact set C. If »,70, then there exists a
compact set LS R’ such that #,(L)>0 and m'(L)=0; but then by
Fubini’s theorem we see that v,(L—x)=0 for almost all x[dm‘?]. Therefore
v,(L)=0, a contradiction. Therefore u"i<m;.

(i) Suppose that u * u € &, and u(G)>0. Then

o 1(0) =[G = (a9 2 | 46 = o) = @) > 0.

Therefore G=/,. Hence u € &.

REMARKS. (1) In order to show u * v €&, we needed only that u
orved,.

(2) Whenever one of the above properties holds for &,, it also holds
for &,. It would be interesting, therefore, to prove or disprove “&’,< &

(3) Most of the proofs in the above theorem hold if instead of R,
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we consider the space [ [, G,, where G, is a connected, uncountable,
abelian topological group with a regular Haar measure.

THEOREM 3. Let u be a regular tight probability measure on a real
Hausdorff topological vector space X, with nontrivial dual X*. Suppose
that there exists {A;}< X* and {x;};2,< X such that:

(1) The tail o-field of {\}} is a zero-one field for u.

(2) For u-almost all x, x=332, A;(x)x;.

(3) If I':X—R™ is defined by T'(x)=(A,(x));2,, then u' € &,.

Then if G is a completion measurable subgroup of X, we have u(G)=0 or 1.

PROOF. Let E={x e X:x=2%, A;(x)x;}. Then E is a subgroup of X
of u-measure 1. Now suppose that G is a completion measurable subgroup
of X with positive u-measure. Since u is regular and tight, we may choose
a compact set K contained in ENG such that u(K)>0. Let Ky=KU
(—K)U{0} and K,.,=K,+K,. Then H={J;_, K, is a subgroup of
G NE with positive u-measure. Since I' is continuous, I'(H) is o-compact
and hence measurable. But u"(I'(H#))>0, and therefore I'(H)=/,. Hence
W (C(H))=1by (1). Since H=ENT-'T'(H), we have that u(G)=u(H)=1.

The next corollary follows from Theorem 3 and Theorem 2(f).

COROLLARY 3.1. Let ue M. Suppose that the following conditions
hold:

(i) p,~p for all a € ly, and

(ii) the o-field generated by the coordinate mappings is trivial with
respect to p.

Then if G € By and GER™, we have u(G)=0 or 1.

ProposITION 3.2. Let ¢:R®—R™ be linear and measurable, and let
w € M. Suppose that for every A%-measurable subgroup G of R”, we
have u(G)=0 or 1. Then for every A;3-measurable subgroup G of R®, we
have u?(G)=0 or 1.

Proor. By Corollary 1.1 we may consider #*-measurable subgroups.
The rest of the proof is trivial.
In the next theorem we show that similar results hold for semigroups.

THEOREM 4.  Let pu be a probability measure on a topological group X
such that:

(1) for every A in the Borel o-field, p(A)y=u(A™), where A=
{al:a e A}, and

(2) every completion measurable subgroup of X has p-measure 0 or 1.
Then if X is a completion measurable subsemigroup of X of u-measure
greater than %, we have u(S)=1.

PrROOF. Let S be as above. If S~'={x"1:x € S}, then G=SNS~lisa
subgroup of X of positive measure. Therefore 1 =u(G)=u(S).
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4. Examples. (a) Let x4 be a mean-zero Gaussian measure on a
real, separable Banach space (B, || - || ;). It is shown in [5] and [8] that
there exists a Hilbert space, H, contained in B, such that u is induced by
the canonical normal distribution on H. If {¢;};2, is a complete ortho-
normal system for H contained in B*, then for u-almost all x in B,

N
Z X, 9)9;

(see [3] and [7]). Since {(x, ¢;)};2, is a sequence of independent Gaussian
random variables with mean zero and variance | ¢,|3 =1, the hypotheses
of Theorem 3 are satisfied.

In this case we can even say more.

B

THEOREM 5. In the above setting H=(" G, where the intersection is
taken over all completion measurable subgroups, G, of positive u-measure.

PROOF. As before let I': B—~R® be defined by I'(x)=((x, ¢,))2;, and
E={xe€ B:limy|x—>", (x, ¢,)@;| z=0}. Since (u"),~u" if and only if
o € I, we see by the proof of Theorem 2(f), that any #,;-measurable
subgroup, G, of R® with uF(G)>0, contains [2

Now, for any y € R®, let M,={x € R*:|2Z, y,x,|<0}. It is easy to
see that u"(M,)>0 if and only 1f y € l,. Let M=(",;, M,. By the Banach-
Steinhaus theorem M =/,. However,

AT™(M,) NE=T") NE=H.

YEl2
Hence we are done.
(b) Let {£;}72, be a sequence of independent random variables with
densities, and let u be the measure on R® induced by {£;}72,. Now fix a
nonnegative integer m and real numbers ay, - * -, @,, (not all zero). Let

m+1l

L= Z @i a&iimiri
i=1

for j=1, and » the measure on R* induced by {{;}j2;. Define ¢: R*—R*
by
m+l

[p(x)]; = Z A1 Xt my1—s

i=1

It is easy to see that ¢(ly)=/, and v=u®. Hence any #}-measurable
subgroup of R with positive »-measure contains /,. Hence by Proposition
3.2, any #-measurable subgroup has »-measure zero or one.

(c) Let {£;};2, be a Markov chain with state space the real line, and
let u be the measure on R® induced by {£,}72,. Assume that u € &, and
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the tail o-field is trivial. Then using an argument similar to that of Corol-
lary 1.2, we can show that p € &5, and hence u € &,. Therefore, since the
tail o-field is trivial, measurable subgroups satisfy the zero-one law with
respect to .
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