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ON  ANALYTIC IRREDUCIBILITY AT   co

OF A  PENCIL  OF  CURVES

T.  t.  MOH

Abstract. In this article we establish that if a member of the

pencil f(x,y) + l is analytic irreducible at co then all members

are.

1. Introduction. In [3] W. Engel used the following statement:

"For a special member of the pencil/(x, y)+-n=0 the number of branches

at co cannot be greater than the corresponding number for the general

one". The above statement has been a main blockade for understanding

his proof of the theorem of integral Cremona-transformation or the global

Jacobian theorem. In 1971 S. S. Abhyankar disproved it by giving a

counterexample (unpublished). However a weaker statement (see Theorem

I) can be proved easily by applying the results of [4]. The notations and

results of [1], [2], [4] will be used extensively. We shall assume that the

ground field k is algebraically closed with characteristic zero.

2. Theorem I. Let fox, y) be a polynomial of degree n defining a

curve with only one place at oo centered at the infinite point on the x-axis.

Let ipf) be defined as in [1], [2], [4]. Let d=maxtpfd^. Note that d

is a positive number.

Theorem I. The curve defined by fox,y)+pix) with deg/?(x)<c/ has

only one place at oo. In particular, fox, y) + c is analytically irreducible

at co for arbitrary constant c in k.

Proof. Since fox,y) defines a curve with one place at co, then it

follows from Theorem I of [4] that there is an ordered factorization of

«=«,, «2, • • • , nh such that the rth power conditions are satisfied VrSh.

Let us use this factorization for fox, y)+p(x) also. Let gr(x,y) be the

approximate drth root of/(x, y), namely gr(x, y) is the unique polynomial

with

degy(/(x, y) - gr(x, yf) < n - (n¡dr).
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Clearly

degB(/(x, y) + pix) - grix, y)dr) < n - (n/<rf).

In other words gTix, y) is the approximate drth root of fox, y)+pix).

Let us verify the conditions (1), (2) and (3) in Definition 4.2 of [4] for

f(x,y)+p(x) and the ordered factorization n=nx, n2, ■ ■ ■ , nh. Let

fix, y) = grix, y)<" + 2 Í2 «<.«"W*. yY'-'

Clearly

/(*, y) + pix) = gr(x, yy + 2 Í2 fl*«g"W, y)dr~' + fa)-
i=l   V  a I

The corresponding polynomials in Definition 4.2 of [4] for/(x,j) and

fox,y)+pix), respectively, are as follows

y'lT + 2 (2 ai*xx)yd'-' = Zfi(xi> ■ ■ •. *«)/'-',

!r + 2 (2^)/" + fa) = 2/^i. • • •. *>"'" + ̂ (x)-

and

y

According to the rth power condition for/(x,y), pr=dT\arfd (x,, • • • , xn)\

is strictly bigger than \arpix)\=n deg/>(x) by our restriction on the degree

of p(x). It trivially follows that conditions (1), (2) and (3) in Definition

4.2 in [4] are satisfied. Our theorem follows from Theorem I of [4].

Q.E.D.
Let/(x,j») be a polynomial defined by a rational curve with one place

at 00; it follows from Theorem I that fox, y)+X will define the curve with

one place at infinity. We propose

Conjecture. Let/(x,j) be as previous. The polynomial f(x,y) + X

defines rational curves for some nonzero À iff/(x, y) defines a nonsingular

rational curve.

Remark. After this manuscript had been prepared S. S. Abhyankar

showed the author another proof by applying (3.4) of [1]. In fact, as

pointed out by him, the condition "only one place at 00" can be replaced

by "only one place at point/»" without changing either proof.
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