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X CONNECTIVITY AND MAPPINGS ONTO A

CHAINABLE INDECOMPOSABLE CONTINUUM

CHARLES L. HAGOPIAN

ABSTRACT-   A continuum (i.e., a compact connected nondegenerate

metric space)  M is said to be  A connected if any two of its points can be

joined by a hereditarily decomposable continuum in  M.   Here we prove that

a plane continuum is   A connected if and only if it cannot be mapped con-

tinuously onto Knaster's chainable indecomposable continuum with one

endpoint.   Recent results involving aposyndesis and decompositions to a

simple closed curve are extended to  A connected continua.

Throughout this paper  D will denote Knaster's chainable indecomposa-

ble continuum with one endpoint (see  [7, p. 332]  or [9, Example   1, p. 205]),

/ will denote the unit interval, and  h will denote the function of  / onto it-

self defined by  h(t) = 2/ for  t < l/2 and  h(t) = 2 - 2/ for  t > l/2.  D can be

represented as an inverse limit of unit intervals, indexed by the positive in-

tegers, where the bonding map between successive terms is always   h.

In [l0]¡  J. W. Rogers, Jr. proved that every indecomposable continuum

can be mapped continuously onto  D.   Recently D. P. Bellamy [l]   genera-

lized this theorem by showing that  D  is a continuous image of each inde-

composable compact connected nondegenerate Hausdorff space.   Our princi-

pal tool (presented in the following theorem) is derived from Bellamy's proof.

Theorem   1.   Suppose that  M  is a continuum and \G  i°°_,   z's a sequence

of nonempty open sets in  M  such that (1)  the closures of G.   and G2  are

disjoint,  (2) for each n,   G.     , U G.   ,, C C,      ,,  and (3) for each n,   there1 '   v   '   ' 272+1 2n+2 277—1' w'   '

z's a separation A   u ß    of M — G.,     such that G -   ., C A    and C.   ,n C B.r 77 72 Z 277 272+1 77 272+2 72

Then M  can be mapped continuously onto  D.

Proof.   Following Bellamy [l, Theorem (proof)],  we let /.   be a Urysohn
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function of M onto /  such that f AG x) = 0 and /,(G2) = 1.   Proceeding in-

ductively, we suppose a continuous function /. of  M  onto  / has been de-

fined for each positive integer i < n such that for each  i > 1,  h ° /. = /.   .

and such that for each  i,  f(G2_l) = 0  and f \G 2 ■) = 1.   Define the function

/     ,  of M onto / by'72 + 1 '

/„>> = */„(*) if*eAn,

= l-Vifix)   if xeBn,

-U lixeG2n

Note that /   , ,   is a continuous function,  h ° /     , = / ,   /     ,(G,     ,) = 0,  and'72 + 1 ' '72 + 1 '77'    '72 + I 272 + 1 '

/   ,,((!,„,,)= 1.   The sequence 1/  ! °°    ,   induces a continuous function of'77 + 1 277 + 2 * '7277=1

M  onto  D.

Theorem   2.   A plane continuum M  is X connected if and only if M  can-

not be mapped continuously onto  D.

Proof.   Suppose that M  is  A connected.   In [6],  it is proved that every

planar continuous image of a A connected continuum is  A  connected.   Note

that since D  is chainable and indecomposable, it is planar [2, Theorem 4]

and not X connected [9, Theorem  7, p. 212].   It follows that  M  cannot be

mapped continuously onto  D.

To establish the sufficiency part of this theorem we assume that M is

not X connected.   According to  [6, Theorems   1  and 3],  there exists an in-

decomposable condnuum   Y  in  M   such that every subcontinuum of M  that

contains a nonempty open subset of  Y contains   Y.

Let G.   and  G2  be open subsets of M that have disjoint closures such

that  Y C\ G. 404 Y O G2.   Proceeding inductively, we assume that open

subsets  G2_,   and  G 2- of M have been defined for 1 < i < «  such that (1)

G2i_inY404G2inY,  (2) for each i < n,  G2f+1 UG2;+2 CC2;_,, and

(3) for each  i < n,   there is a separation A.UB.  of M - G2- such that

Gn.   , CA. and  G,.   . Cg..   Since every subcontinuum of M  that contains
22 + I 2 27+2 2 '

G2   _y(^Y contains  G2   n  Y,   there  exist distinct components W and Z

of M - Gn     suchthat WnG.      ,C\Y404ZnGn      , n y.   Hence there
2t2 277- 1 277-1

exists a separation A    uS     of  M - G-.     such that   Y n G~      , n A    4 0/
r 77 72 272 2t2— 1 77 ^

YnG0      ,nfl    [9. Theorem  2, p. 169].   Define  G,     ,   and  C,     ,  to be
2t7— 1 77 '   r 2~ + l 277+2

open subsets of M in  G2n_^C\ A     and  G2   _ j O ß   (  respectively, suchthat

G2n + iny¿0¿G2n+2ny.
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Since the sequence \G l<X>=i satisfies the conditions of Theorem 1, it

follows that  D  is a continuous image of  M.

Definition. For each set A in a continuum M, let K(A) be the inter-

section of the collection consisting of every continuum in M that contains

A  in its interior relative to M.

This concept is introduced by F. B. Jones [8, Theorem 2]. There the

K function is restricted to  points  (rather than subsets) of a continuum.

Theorem  3.   A plane continuum M can be mapped continuously onto D

if and only if for some point   x of M, the set  K(x) contains an indecomposa-

ble continuum.

Proof. It is known that M is A connected if and only if for each point

x of M, every continuum in the set K(x) is decomposable [5, Theorem 5].

Hence this theorem follows directly from Theorem  2.

In [il],  H. E. Schlais establishes the following:

Theorem.   // M  is a hereditarily decomposable continuum, then for each

point x of M,  the interior of K(x) relative to M  is void.

E. J. Vought in [12] points out that Schlais' argument [ll, Theorem 9

(proof)] also indicates that for each continuum of condensation H in a here-

ditarily decomposable continuum  M,  the interior of  K(H) relative to  M  is

void.   Using this fact, Vought then proves the following:

Theorem.   Suppose that  M  is a hereditarily decomposable continuum

that is not separated by any of its subcontinua.   Then M has a monotone up-

per semicontinuous decomposition each of whose elements has void interio

and whose quotient space is a simple closed curve.

In [4]  the author extends Schlais' theorem to X connected plane con-

tinua.   However, it follows from [3, Theorem  2]  and [5, Theorem   l]  that

every X connected plane continuum that is not separated by any of its sub-

continua is hereditarily decomposable.   Hence  [4]  cannot be used to genera-

lize Vought's decomposition theorem.

The following result extends Schlais' theorem to all X connected con-

tinua, and leads us to a generalization of Vought's decomposition theorem.

Theorem  4.   // M   is a X connected continuum, then for each connected

nowhere dense subset   H of M,  the interior of K(H)  relative to M  is void.
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Proof.   Assume there exists a connected nowhere dense subset H of M

such that the interior of  K(H) relative to M  is not empty.   Let  (J  be a non-

empty open subset of M  whose closure is contained in the interior of  K(H)—

H.   Define L to be the component of M - U that contains H.   Let Z denote

the intersection of L  and the boundary of  U.   Define G,  and G2 to be non-

empty open subsets of M  such that ZCCp   G2 C U,  and the closures of

G,   and  G2  are disjoint subsets of  K(H) - H.   We proceed inductively.   As-

sume that open subsets  G 2 ■_ j  and G 2 ■ of M have been defined for  1 < i < n

such that (1) Z C G2;_j,  (2) L   and the closure of G2- are disjoint,  (3) for

each  i < n,  G-, ■   , U G, .   , CG,.   ,,  and  (4) for each  i < n,  there is a sepa-22 + 1 27 + 2 27—1' v   ' ' r

ration A.uB. of  M - G n ■ such that   G., .   .CA. and Gv  ,Cß..
7 2 22 22+1 2 22+2 2

Note that since   L  and the closure of G,    are disjoint,  P = (the compo-

nent of M - G,     that contains   H) contains  Z.
2t2

Suppose that  P  contains  G2      ,.   Since  H does not lie in the interior

of  P,  there exists a sequence of points ix.^-j    in M - (P U G2  )  converg-

ing to a point of JY.   For each positive integer  i,  define  X . to be the x .-

component of M - G2  .   The limit superior X of [X.!°°=1  is a continuum in

M  that meets both  H and the boundary of G2    Í7, Theorem  2-101, p. 101].

Since  G2   _,CP,  for each positive integer  z,  G-,   _jOX.=0,  which im-

plies that G2   _ j n X = 0.   Since ZCG2   _,  and XHL40,  the continuum

X does not meet  (/.   But this implies that   X  is a subset of L,  which con-

tradicts the assumption that L does not meet the closure of G2  •   Hence

there exists a component Q of M - G2  ,  distinct from  P,  that intersects

G,     ,.
272- 1

Define  A   \j B     to be a separation of M - G -,     such that  P C A     and77 77 r 277 77

Q C B  .   Let G be an open set in A    nG,      ,  that contains  Z.   Let
" 2t2+ 1 r 77 277- 1

G-,     -, be a nonempty open set in B   nG,      ,.   Note that since  L C A
2t7 + 2 r /      r 72 2t2— 1 77

and  G,     , CB   ,  L   and the closure of G,     ,  are disjoint.
2j7 + 2 72' 277 + 2 '

The sequence  ÍG   l°°_,   satisfies the conditions of Theorem   1.   Hence
1 72   77 - I

the indecomposable plane continuum D  is a continuous image of the  X con-

nected continuum M,  which is impossible  [6, Theorem  5J.   It follows  that

for each nowhere dense  connected subset  H of M,  the interior of  K(H) rela-

tive to  M  is void.

Theorem 5.    Suppose that  M  is a X connected continuum that is not

separated by any of its subcontinua.   Then M  has a monotone upper semi-

continuous decomposition each of whose elements has void interior and

whose quotient space is a simple closed curve.
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Proof.   This theorem follows directly from Theorem 4 and  [12, Theorem

2 (proof)].

To see that Theorem  5  actually is a generalization of Vought's theorem,

consider the continuum M  that is the union of a disk  T and a ray that limits

on T and has only its endpoint in T.   The A connected continuum M  is not

separated by any of its subcontinua.   Since  M  contains a disk, it is not he-

reditarily decomposable.
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