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PERTURBATIONS OF SEMI-FREDHOLM OPERATORS

BY OPERATORS CONVERGING TO ZERO COMPACTLY

SEYMOUR GOLDBERG

ABSTRACT.  Let  \K   | be a sequence of bounded linear operators

mapping a Banach space  X into a Banach space such that  K   — 0  strong-

ly and  \K x   j is relatively compact for every bounded sequence  \x   \ C X;

e.g.,   ||>v   || — 0.   Given   T a semi-Fredholm operator, it is shown that for

all sufficiently large  22,   T + K    has nullity and deficiency not exceed-

ing that of   T while the index of   T + K    equals that of   T.   Properties

of the minimum modulus of   T + K    are also given.
72 °

Let X and V be Banach spaces. A sequence \K \ of bounded linear

operators mapping X into Y is said to converge to zero compactly, written

K   ■£* 0,  if
72 '

(1) K x —> 0 for all x e X;
72

(2) \K x  i  is relatively compact for every bounded sequence  \x  \ C X.

Clearly,  \\K  || —» 0 implies  K   —> 0.   If (J   K S is relatively compact,

where  S is the   1-ball in  X,  then (2)   is satisfied.   In this case  \K  \ is

called collectively compact and was intensively studied in  [l].

In this paper we present properties of the nullity, deficiency and index

of operators of the form  T + K  ,  where  T is a semi-Fredholm operator and

K  —>  0.   We obtain theorems analogous to those given in [3]  and [41,

where the requirement was that  Kn  be "small enough" in norm.   We gener-

alize the results and simplify the proofs appearing in  [5]  where  X and   Y

were assumed to be Hilbert spaces with   T a bounded semi-Fredholm oper-

ator.

Throughout this paper T is assumed to be a closed linear operator

with domain SAT) C X and range J\(T)  a closed subspace of  Y.

a(T) = dim Jl(T),  where Jl(T)  is the kernel of T and ß(T) =

co dim Â(T).   If, in addition,  a{T)  or ß(T) is finite,  T is called a semi-
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Fredholm operator with index AT) = a(T) - ß(T). If both a(T) and ß(T)

ate finite,   T is called a Fredholm operator.

For properties of semi-Fredholm operators the reader is referred to  [3]

and [4].

Preliminary remarks.

I. S(T)  is closed if and only if y(T) = inf || Tx\\/d(x, Jl(T)) = llT-1!!-1

> 0, where d(x, Jl(T))  is the distance from x to 3l(T) and  T is the   1-1

operator induced by  T.

II. If M},  a  sequence  of bounded  linear  operators on  X with range

in  Y, converges strongly to zero, then i||A  ||| is bounded and {A   ! con-

verges to zero uniformly on totally bounded sets.

III. If \y   I  is a bounded sequence in J\(T),  then there exists a bounded

sequence  \x  \  such that  Tx   = y  .
n 77 77 J n

This follows readily from y   = Tv    and ||y || = \\Tv  || > y(T)d(v , 7l(T)).

IV. If a(T) < oo and \xn\ is a bounded sequence such that \Txn\ con-

verges, then ¡x S has a convergent subsequence; for, since M.T) is closed,

Tx  -> Tx and therefore x   + 3l(T) = T~lTx    -> f~ lTx = x + Jl(T)  in
n n n

X/JliT). Thus there exists z^ e Jl(T) such that xn + zn —> x. Since [zj

is bounded in finite dimensional space lt(T), it, and therefore \x }, has a

convergent subsequence.

Basic Lemma    [2, p. 190].     If M and N are subspaces of X and

dim M > dim N,   there exists an m £ M such that   1 = \\m\\ = Am, N).

Throughout the remainder of this paper,   Kn—» 0.

Lemma  1.   // a(T)<oo  and 7l(T)  is complemented in  X by a closed

subspace M,   then there exists a p and c > 0 such that for n > p, TM + K

is   1-1  and    y(TM + K ) > c,  where  TM  is the restriction of T to

M n 3)(T).

Proof.   Suppose  \y(T'    + K )\ has a subsequence converging to zero.

For simplicity, let y(TM + K ) —► 0.   There exists \m  1 C M  such that

\\mj = 1 and (T+ Kj mn -* 0.   Since  Kfí -^ 0, \KnmJ,  and therefore \TrnJ,

has a convergent subsequence. Thus by IV, S222  j has a convergent subsequence and

by II, \K m \, and therefore \Tm \, has a subsequence converging to zero.   This

is impossible since   T„  has a bounded inverse.   This argument also shows

that  TM + K    is   1-1   for sufficiently large«;  otherwise, a sequence

\m  \ with the above properties would obviously exist which leads to a

contradiction.
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The assumption K —> 0 does not even imply that the sequence \K \

of conjugate operators converges strongly. The following simple example

taken from [l]  confirms this.

Take   X= Y = /,.   Define   Knx - x  ev where  x = 2T x{ei, \e;}  the

usual set of unit vectors.   Then  K   e,  - e    does not converge in /,.
72      1 77 ° 2

In light of this example, it is somewhat surprising that the following

"dual" lemma holds.

Lemma  2.   Let 3)(T)  be dense in X.    If ÍR(T)   is complemented in   Y

by a closed sub space  W,   then there exists a p and c > 0 such that for

n>p,T'+K^   is   1-1  on W° = \y'e y': yW = o\ andy(T'Q + K^ ) > c,  uz/We

T'0   is the restriction of T'  to  W° H 2)(r').

Proof.    y = 3Kr)  ©  W and  y' = 3l(r)0 © W°.   Suppose y(T¿ + K¿)

has a subsequence  converging to zero.   For simplicity, let  y(T    + K   )

-. 0.   There exists  {y^ 1 C W° such that   1 = ||y¿||   and (T* + K^)y^ —   0.

Choose  y^  so that   1 = ||yj   and y'nyn > %.   Now yn = Tvn + wn, wn £ W

and \Tv  \ is bounded since J\(T)  is closed and complemented by  W.

Hence by  III,  there exists a bounded sequence \x  \ such that Tx   = Ti;  .

Furthermore,  y   f —> 0 for all v £ Y.   To see this,  y   Tx = (T + K  )y  (x)
J 72 J n 77   ^ 72

- y    K x —> 0.   Since  y '   is in  W0 and iR(T)  is complemented by  W,

y ' i> —» 0 for all u e V.   Now

(*) M<y'y   =(T' + K')y'(x )-y'K x .
v    ' 'L  —  1 nJ n 77   y 77       77 ■'71      77    77

Since !x } is bounded, I K x \ is totally bounded which, together with the

observation that y v —> 0 for all v £ Y, implies that \y K„x„\ converges

to zero.   Therefore (*)  cannot hold since (T  + K   )y    —> 0.

The above argument also shows that  T  + K     is   1 - 1  on  W° fot all

sufficiently large  n;  otherwise a sequence !y   \ with the above properties

would obviously exist which leads to a contradiction.

Theorem  1.   Suppose  a(T) < <x>.    There exists a p  such that:

(1) T + Kn  has a closed range and a(T + K ) < a(T), n > p.

(2) a(T + Kn)= a(T), n>p,  if and only if infn>p y(T + Kn)> 0.   In

this case, X = M  © Î1(T + K), n > p,  where Jl(T)  is complemented by the

closed subspace  M.

Proof.   X = M © Tl(T) for some closed subspace M.   Let p and c > 0

be as in Lemma   1  and n > p.   Then  (T + K )/M  is closed by  I and the fi-

nite dimensionality of Jl(T)  implies %(T + K ) = (T + K )M + K 7l(T)  is
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closed.   Moreover, by Lemma  1,  M O JliT + Kj = \o\.   Hence  X = M ©

JI(T) DM© 3l(T + Kn) which implies  a(T + Kn) < a(T).

Suppose  a(T + KJ = a(T), n^p.   Then  X = M © °K(T + Kj and for

x = mn+ z , mn e M, zn e J[(T + Kn), we have by Lemma   1  that

\\(T+ K )x\\ =\\(T + K )m  || > c\\m ||II 77       M " n       72"   —       "      77u

> cd(mn, Jl(T + Kn)) = cd(x, îl(T + Kj).

Thus y(T + K ) > c> 0, n> p.   Conversely, suppose y(T + Kn) > c > 0,

n> p, but that  a(T + Kj 4 O-(T).   Then, from (1),  a(T + Kn) < a(T).   By

the basic lemma there exists Iz^l C?t(T) such that  1 = ||z || = d(z , J[(T + K )).

Hence for n > p,

(*) 0 < c = cd(z  ,n(T + K))< \\(T + K )z  || = || K z ||.77 77        —   " 77       77n "       77    7711

Since 7l(T)  is finite dimensional, \z  |  has a convergent subsequence and

therefore by  II,  \K z  \  has a subsequence converging to zero, contradic-

ting (*).

Theorem   2.    // 5l(T)   is complemented in   Y (by a closed subspace)

and T is densely defined, there exists a p such that for n> p,   a(T   + K  )

< a(T').

If ß(T) < oo,  there exists a p such that:

(i)   T + K    has closed range with ß(T + K ) < ß(T), n> p.

(ii)   ß(T+ Kn) = ß(T),n>p,   implies infn^py(T + Kj > 0.

Proof.   Let W and p be chosen as in Lemma  2 with n> p.   Then

Y'= %(T)° © W°=3T(T') © W°.   Since  T' + K'n   is   1-1   on  W°,   Y'D

ÎÏ(T' + K^) © W°.   Thus  a(T' + K'n) < a(T').

(i)   By replacing  X by c0KT)),   if necessary, we may assume   T is

densely defined.   Since ß(T) < °<¡,  there exists a p and  W as in Lemma  2.

For n > p, (T' + K   )W° is closed by preliminary remark I.   Since  0-(T ) =

ß(T) <=o, (T'+ K^)y' = (t' + K'2)W°+ K^Jl(T') is closed; i.e.,   ? + K'n

has a closed range and therefore   T + K    has a closed range.   Thus by

what we have already shown,

ß(T + Kn) = a(T' + K'n) < a(T') = ß(T),       n > p.

(ii)   Suppose /S(T + KJ = ß(T)<°° or equivalently  a(T' + K^) =

a(r'), n> p, with p and c chosen as in Lemma 2.   Then  Y  = Jl(T ) ©

W°= 3I(T' + K^) © W°.   Thus for y' = z^ + «/, z^  £?1(T' + K^), u/¿  e W°,

we have
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||(r' + K')/|| =||(r' + K'V|| >c\\w'\\ >cd(y',7l(T' + K')).ii n j  n       n „     „n  _     n    „n _ j n

Hence y(T + Kj = y(T' + K¿)>c,n>p.

Theorem  3.   Let  T be a Fredholm Operator.    Then y(T + K )   is

bounded away from zero for all sufficiently large n  if and only if a(T + K )

= a(T)  and ß(T + KJ = ß(T)  for all sufficiently large n.

Proof.   By replacing  X  by  cl(D(T)),   if necessary, we may assume   T

is densely defined.    Y = ÍR(T) © W, W finite dimensional.   Suppose

y(T + K^) > c > 0  for all but a finite number of n but that ß(T + K ) 4

ß(T) fot infinitely many n.   Then by (i)  of Theorem 2, ß(T + K ) < ß(T)

fot infinitely many n.   For simplicity, suppose ß(T + K ) < ß(T)  and

y(T + K^) > c  for  n>p,  where p  is chosen so that Lemma   2 holds.   Thus

there exists  y    e *!R(T + K ) D W, ||y  |l = 1.   Since   |ly  ||   is bounded and
7 77 77 '    ll-^7711 "In"

y(T + K )>c>0  it follows that there exists a bounded sequence  íx  Î

such that y    = (T + K )x  .   Now  \y  \ has a convergent subsequence since

W is finite dimensional; say y  / —> y e W.   Since  \K  ix  A has a conver-
' 1     J n » 77       77

gent subsequence, so does  \Tx  ,\.   Thus by preliminary remarks  IV  and

II,  \x  i\ has a convergent subsequence and  {K  ix  A has subsequence

\K i,x »! converging to zero.   Hence  y- limy  n  = lim Tx „ eJ\(T),   which

shows that y  is in %(T) O  W = (o).   This is impossible since   ||y|| = 1.   The

rest of the theorem follows from Theorem   1.

Theorem  4.    Let  T be a semi-Fredholm operator.    There exists a p

such that for n > p,

(1) ■ T + K     is semi-Fredholm,
77

(2) a(7+ Kn) <a(T),

(3) ß(T+ Kj<ß(T),

(A)   k(T+ Kn) = K(T).

Proof.   The first three conclusions are contained in Theorems   1  and   2.

There exists a  p  such that for all  X £ [0, ll  and n > p, T + XKn  is semi-

Fredholm.   If this is not the case, there exists a subsequence { Kn'\ and

a sequence  A    £ \0, l]   such that  T + X K  i  is not semi-Fredholm.   This is" 72 L     ' 77      72

impossible by Theorems 1 and 2 since A K i —> 0. Given n> p, define

d> on [0, 1] with values in the set of extended integers with the discrete

topology by  r/>(A) = k(T + XK ).   By [3, V.1.6J,  d> is continuous, and since
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[0, 1]   is connected,  (f> is constant.   In particular k(T) = <f>(0) = rA(l) =

k(T+ Kn).

Remark.   In Bull. Austral. Math. Soc. 8 (1973), 279-287, Lo proved the

following theorem.

Let  T, T     be bounded linear operators on X,   T compact and  \\T   - T\\

—» 0.   Let p\ 4 0  be an eigenvalue of T,   and let p    be eigenvalues of T

such that p.   —> ¡x.   Then the following are equivalent:

(a) dim il(p   - T ) = dim Jl(p - T)  eventually;

(b) for every x  in JI(u — T), \\x\\ = 1,  there is a sequence  \x   \ such

that x    e J[(ii   - T ) and x   —> x.
77 ^77 77 77

The above result is a very special case of Theorem 1.   For consider

a   -T   = a-T + K    where  K   = u   -p+T -T .   Then  ||K  || -. 0  and
rn 77 ' 77 77 "77 ~ 72 n       72 "

therefore  K    —>0.   Since   T is compact, p - T is a Fredholm operator. As-

suming (a), we have, by Theorem 1, the existence of a  c > 0  such that for

all  72  sufficiently large and x e JI(/x -   T),

KKn4-\\(lin-TnM>cá(x,n(p.n-Tn)).

Since   K x —. 0,  (b)  follows.   On the other hand, if (b) holds, then Theorem

1 together with the basic lemma imply (a).

The proof shows that  T need not be compact but only that u — T he

semi-Fredholm with a(/¿ - T) < <*>.   Moreover,   ||T   - T|| —> 0 can be replaced

by  T   — T  —>   0.   If we stipulate that p - T be Fredholm, then to (a) in the

above theorem we may add  ß(p   — T ) = ß(fi — T)  for all n sufficiently large.

This is a consequence of Theorem 3.
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