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ON THE DISTRIBUTION OF ZEROS

OF ENTIRE FUNCTIONS

A. R. REDDY

ABSTRACT.   Let f(z)  be any transcendental entire function.   Let  r,

denote the absolute value of the zero  z.   of f    '(z)  which is nearest to

the origin.   Alander, Erdö's and Renyi, and Polya have investigated the re-

lation between  r,   and the growth of the function /(z).   Let s,   denote the
... fz

largest disk about the origin where /      (z)   is univalent.   Boas, Levinson,

and Polya have obtained some relations between the growth of the function

f(z)  and s ,.   Recently Shah and Trimble have sharpened the results of

Boas and Polya.   We present here results in a different direction, genera-

lizing the above quoted results.   We also present results connecting the

zero-free disks and the univalent disks about the origin of the normalized

remainders of f(z)  with the growth of /(z).

1.   Introduction.   There is extensive literature on the existence of

zero-free disks for a sequence of derivatives of an entire function, as well as

on disks of univalence for derivatives.   Recently it has become clear that

there are analogous results for a class of operators much more general than

the operator of differentiation, the so-called D-operators (cf. [6]).   These

are defined as follows.

Let id}°°_.   denote a nondecreasing sequence of positive numbers and

let the operator D transform the function f(z) = S^L, a z'  into  Df(z) =

S°°„ d.   ,a .   ,z].   In general for k = 0,  1, 2, • • • ,
j=0; + lj + l 6 >>> )

^°      e .

Okf(z) l = Y ~- aL   -z77    where  en = 1   and  e . = (d.d, ... d)~l.

7=0    K+L

For d   = 72, D is the ordinary derivative; for d   = 1,  D  is the shift operator

a,  whose iterates are the normalized remainders of the power series of the

function; much less has been known about zero-free disks for a f(z)  than for
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'We restrict that  lim sup   _\a /e \ < oo; this restriction assures that each
, rr7->°ol    77      771 '

of /, Df, • • • , D*/,   is entire (cf. [6, p. 350]).
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/     (z) (cf. [7]).   By studying  D-operators in general we not only show that

many known results for derivatives appear as special cases of a general

theory, but we also obtain the unexpected result that for the  D-operators

corresponding to certain sequences  \dA the functions  D f(z) have, so to

speak, much scarcer zeros than is the case for f-    (z).   For example, if the

lower order of / is less than   a and d,= k ^a (a > 0),  then Theorem 2 of this

paper asserts that anywhere in the plane for every disk of arbitrarily large

radius there exist    infinitely many  k where  D f(z) 4 0.

Throughout our work we restrict  d. by

(1)
Wt+irf;   where M-1.2, 3, 4,

2.   Lemmas.

Lemma 1     [2, p. 82].   Let f(z) = S°°    a .zJ  be any entire function.    Then

for an infinity of k and j = 0, 1, 2, 3, • • • , we have   \a, +.\ < |a,||a^|7

Lemma 2    [9, (39)L   Let f(z)  be an arbitrary entire function,  M(r) =

max i   1    f(z),  and let x = H(Y)  denote the inverse function of Y = log M(x),

then  \an\1/nH(n) < e (» = 1, 2, 3, • • •).

Lemma 3    [4, p„ 13]»   Let f(z) = 2°°=0 a z'  be any entire function of

lower order X (0 < X < 00)  and let  v(r) denote the central index, then

.     log Ar)     .
lim  inf ——-= A.

r—oo       log r

Lemma 4    [14, p. 24]. Let ¡(z) = S"*!, a .z1  be any entire function of or-

der p (0 < p < 00), lower order X (0 < X < p < 00),   lower type t and type T

(0 < t < T < 00),   then

<XT,

v     ■ fy(r)hm  inf —-5-
7—>co     r

<pt.

Lemma 5.   Let f(z)  be any entire function.    Then D  ~  f(z)  is univalent

in a disk of radius  R  if

00 \a,    ] e.   ,e,R'

£</ + !) Lit?!4iL*_<i.
:1 \a,

e .  , e ,
j+k   1

Proof.   It is clear from the definition that for Z, 4 Z,  and |Zj| <R,\Z2\ <R,

Dk-l f(zA-Dk-lf(z2) (z[ z\)

i=l
'/>+;-1 î+y-! (Zl-z2)

\ak\el

7=2

a,   .   . !e,-
1   k +j - 11 /

ej+k-\
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if KK/<?*>27=2 iR'~l l*y+*-il'/*y+*-i' then clearly Dk~l^z) is
univalent for  |Z| < R, hence the lemma.

3.   Zero-free disks for D f(z).

Theorem 1.    Let f(z) = IM..fl .z'  be an entire junction, and let ///,   denote

the absolute value of the zero Z,   of D f(z)  which is nearest to the origin,

then denoting by x = H(Y) the inverse function of Y = log M(x),  and with the

assumption (1), we have

d,    .iff.        i
lim sup   -5Ü—£- > -L .

k-,x H(K)    * 2e(2)

Proof.   From the definition of  D f(z)  along with Lemma 1, we have, for

all those values of  k fot which Lemma 1 is valid,

I D kf(z)

D*/(0)
(3)

< V      ; __iiL.
—   *    •    P i i

7 = 1

dk+ldk+2

dld2

_ÍÍÍK|/A|Z|

(4) l/Ap/'
- Z^      £ + 11    fel 1   _  ]„    |l/fej ñ

y=i l    \aA    ak+iK

by choosing   |afe| l/kdk + lR < 1.

Now it is clear from (4) that if l/(l - |«fc| 1/'fea'/fe +, R) - 1 < I then Dkf(z)

40 lot |*| <R.

In other words if R < 1/2|aj J/*^ + ,.  then  D*/0) ^0  for   |z| < R.    That is

1
(5) ^>

'fe¡ '   **■

Now the required result (1) follows from (5) and Lemma 2.

Remarks. We have from (2) for any entire function lim sup, «\+.i/r = no.

For d, = k, we have the result of Erdös and Rényi [9, (47)J as a particular

case.

Corollary 1.   Let  C = CAf)  denote the absolute value of the zero  \z,\

of a f(z) (kth normalized remainder), which is closest to the origin, then for

any entire function lim sup,      C, = °°.

Proof.   This follows easily from (2) by choosing  d, = 1.

Theorem 2.   Let f(z) = £™Ln a .z*  be   an entire function of lower order
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A (0 < A < oo).    If uj,   is defined as in Theorem 1, then

loê^kdk + l       1
hm sup -    *  g+     > -.

fe-oo log, ~ A

Proof.   As usual

Dkf(z) _l

Dkf(0)

00   e.e.   a,    .
^    k i   i   k+ji ,   ,

SL.Tr-.-r—r\z\
7 = 1    k+J     \ak\

1/72If /(z) is entire, then the radius of convergence C = °o, that is, |a

and thus one can find for any B > 0 (B < C) an infinity of values of k fot

which |«i + -| < \a,\ B_; (/ = 1, 2, 3, • • •)• Now by substituting this in the

above inequality, we have

Dkf(z)   _j

Dkf(0)
<Z

ekej  |*l'

7j    *+y    B
y-<Z4+lNI^"y-

7 = 1

We choose here  d\+.|z| < B,  so that we have from (6)

(7)
D*/(*)     1
Dkf(0)

: F ¿( , |*|yß"y =---1

As earlier it is clear, from (7),  Dkf(z) 4 0, for  |*| < R  if R < B/2¿t + 1, that

is,xf,k>B/2dk + v

Now we choose here  B = r,  k = w(r) the central index of /,  and clearly

Or.   Then

logr   < log dk + l^k |     log 2   _

log u(r) —     log u(z") log u(r)

This inequality along with Lemma 3 gives us the required result.

Remarks.   If A < a and dk = kl/a (a > 0),  then from Theorem 2 we have

lim sup-^i/f, = oo.   From this it is clear that, if  o. is very large,    A can be very

large, thus we get even for large A, very large zero free disks  tending to

infinity.   In fact lim supfe_woî/'^ = °o implies that anywhere in the plane for every

disk of arbitrarily large radius, there exist infinitely many  k where  D f(z) 4
o

0.   On the other hand, in the work of Alander [2],  r. —> 0  as  p > 1,  and in

Boas and Reddy [5], the radius of zero free disks tends to zero when  p > 2.

For  d,-k,  Theorem 2 improves the result of Alander [2, Theorem 2] and

Pólya [13, p. 18].   This also improves another result of Pólya [12,Theorem II]

replacing the restriction  p < 2/3  by A < 2/3.   This suggests that Polya's

hypothetical Theorem A [13, p. 182] may be true for any order p as long as

the lower order A is less than 2/3.
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Corollary 2.   Let f(z) = 2e"!.,, a .z1  be an entire function of lower order

X (0 < X < oo).   C,   is defined as in Corollary 1; then

lo« C*      1
um sup -> r-,

fe-oo        log^ A

Proof.   This follows from Theorem 2 by taking  d, = 1.

Theorem 3.   lei /(z) = S"!« a z;  èe a/2 entire function of order p (0 < p

< oo),  lower order X > 0,   lower type  t > 0,   /ype T < <*>.    Lez" i//,   denote the

absolute value of the zero Z,   o/ D f(z) which is closest to the origin; then

under hypothesis (I), we have

d ^k-2ÖäW'

-2lp7)W
Proof.   The proof of this theorem follows exactly on the same lines

as that of Theorem 2, with one difference.   We use Lemma 4 instead of Lem-

ma 3; hence we omit the proof.

Corollary 3.   Let X, p, t and T have the same meaning as in Theorem 3-

Then,

r     >[2(XT)^]-1,
k

lim sup

^~ >[2(Pt)^l-K

This is a special case of Theorem 3 for  d, = 1.

Theorem 4.   Let f(z)  be an analytic function for \z\ < r,  not a polynomial,

ifj,   denotes the absolute value of the zero of D ¡(z)  which is nearest to the

origin.   Then under the assumption (I), we have

lim sup dk+lifik>L.

Proof.   If f(z)  is analytic for |z| < r, then lim sup^Ja |   /; < l/r; from this

we have for any  e > 0  that there exist infinitely many  k for which   |a, +/a, |

< (1 + cVr~\   ;' = 0, 1, 2, • • ■ .   This along with (3) gives us

■l>*/W     1   ^\dk + Al+e)R¡J

\Dkf(0)
< Y )kA \ =_Í_1
"/Til r i      l-^Ü+*ÍR/r        '

because of the restriction that  d,+.(l + e) R < r.   As earlier it is clear from

this that

(8) Dkf(z) 4 0    for   |z| < R, if  R  < r/2dk + l(l + e),
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hence lim sup,_(ooa\ + ji/z^ > r/2, í being arbitrary.

Remarks.   For  d, *¡ 1,  there exist functions  f(z) with radius of conver-

gence 1, for which lim inf ,_jo<¡i/r,   can be determined precisely.   It is known

[7, (1.2) and Lemma 3] that lim sup^^iy^ = lim supjfe_)ooC/fe(/) = l/P,  where 1.7818 <

P < 1.82.   Given any positive small number ß,  it is possible to construct

functions  f(z),  which are analytic in the unit circle for which lim inf t//, < ß.

For example, let  f(z) = 1 — 8z + *   — 8z   + z   — 8z   + • • • ,  8 > 0; i.e.

/(z) = (l -5*)(1 +z2+z4 + ...).

For this function, it is easy to verify that

f(z) = a2f(z) = a4f(z) = ... = a2kf(z),    fot k = 0, 1, 2, .. -,

Hence

a2kf(z) = (1 - 8*)(1 + z2 + z4 + • • •),       5 > 1//3.

From this it follows easily that lim mík\fj, = 1/5 < ß.

We would like to point out here that there exist entire functions  f(z) (cf.

[l0]) for which zeros of  D  f(z)  can be determined with precision.

4.   Disks of univalence.

Theorem 5.   Ler f(z) = £°lna z} be any entire function.   U,   denotes the larg-

est disc about the origin where D f(z)  is univalent (k = 1, 2, ■ • •)•    Then de-

noting by x = H(Y)  the inverse function of Y = log M(x),   we have under hy-

pothesis (1)

limsup^tl/7»-!»  1
t.»      f/(*)      -4e

Proof.   It is known from Lemma 5 that  D   ~  f(z) is univalent for   |*| < R,

if

L2y
e .e, a .   ,

; +k

Uk
R1 < 1.(9> ^ z' ^+T

It is easy to see that the right-hand side of (9) follows from the proof of Theo-

rem 1, by replacing  R  in (3) by 2R.   Therefore all the calculations based on

Theorem 1 are valid for (9) with  R replaced by 2R  in (4).   Hence Dk~1f(z)

is univalent for  |z| < R  if

2R <-rk-.
do) 2KrH+i
Inequality (10) along with Lemma 2 gives us the required result.   Similarly

we can prove

Theorem 6.   Let f(z) = S°l0 a .z7  be an entire function of lower order

X > 0,   U,   denotes the radius of the largest disk about the origin where
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D f(z) is univalent.    Then under assumption (I), we have

..              l°g^fe-A + i      1
lim sup -s--— > t--

fe-.«, log * ~ A

Theorem 7.    Let f(z)  be an entire junction of order p (0 < p < <x>),   lower

order X,   lower type t and type  T (0 < / < T < °o).    U,   denotes the radius of

the largest disk about the origin where D f(z)  is univalent.   Then under

assumption (1), we have

v ^UUT)]-1,
lim sup     k- 1   fe + l

*■*"       ?"     >VA(pt)Yl.

Theorem 8.   Let f(z)  be regular for \z\ < r and not a polynomial.    U,   de-

notes the radius of the largest disk about the origin where D f(z)  is univa-

lent.    Then under assumption (I),

lira sup dk+xVk.i>\-
k-"x>

Remarks on Theorems 5 and 6.   For any entire function we have from

Theorem 5, lim süp,_vxja', +,(/,    , = °°-   For d, = k,  this includes the result of

Shah and Trimble as a special case.   For the case  d, = k,  Theorem 6 im-

proves the result of Pólya [13, p. 181]; this includes also the result of Shah

and Trimble [15, (3-3)].   For d,= k ^a(a>0), one has from Theorem 6 for

a sequence of values of  k,   U,    . > /e      e' ,  that is   U,    . T °°  if A < a .

In fact lim sup.^^U, = oo implies that for each large disk anywhere in the plane,

there exist infinitely many  k,  fot which  D  f(z)  is univalent.   This result is

stronger than the known results in this direction.

Let  V,   denote the largest disk about the origin, where o f(z)  is univa-

lent; then with the help of Theorems 5, 6 and 7, we can replace  C,   by 2V, _ ,

in Corollaries 1, 2 and 3=

Theorems 5, 6, 7 and 8 can be extended easily to the   U -radius studied

in [8]; the details are left to the reader.

My thanks are due to Professor R. P. Boas for suggesting this investi-

gation and also for his valuable suggestions in the preparation of this paper.

I would like to thank the referee for his comments.
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