PROOF OF THE GELFAND-KIRILLOV CONJECTURE FOR SOLVABLE LIE ALGEBRAS

A. JOSEPH

ABSTRACT. Let g be a solvable algebraic Lie algebra over the complex numbers C. It is shown that the quotient field of the enveloping algebra of g is isomorphic to one of the standard fields $D_{n,k}$, being defined as the quotient field of the Weyl algebra of degree n over C extended by k indeterminates. This proves the Gelfand-Kirillov conjecture for g solvable.

1. Introduction. Let g be an algebraic Lie algebra over the complex numbers C. Let Ug denote the enveloping algebra of g and Dg the quotient field of Ug. With n, k nonnegative integers, let $A_{n,k}$ denote the Weyl algebra of degree n over C extended by k indeterminates [1]. Let $D_{n,k}$ denote the quotient field of $A_{n,k}$. It has been conjectured [1]-[3] that Dg is isomorphic to $D_{n,k}$ for suitable n, k. This has been demonstrated for g nilpotent and for g semisimple if either g = sl(r) [2] or Dg is given an extended centre [3]. Here we prove the conjecture for g solvable and algebraic. The analysis is based on the work of Nghiêm [4] and the theorem proved below.

2. A transcendence theorem. Let g be a finite dimensional Lie algebra over \mathbb{C} and A an arbitrary commutative subalgebra of Ug. Let $\text{Dim}_{\mathbb{C}}$ denote the dimensionality introduced by Gelfand and Kirillov [1]. We have shown [5, Theorem 1.1] that

(2.1)
$$\operatorname{Dim}_{C} A \leq \dim g - \frac{1}{2} \dim \Omega,$$

where Ω is an orbit of maximal dimension in the dual g^* of g[1].

Recall that if g is algebraic, then in particular $g \subseteq gl(V)$ for some finite dimensional vector space V over C. $g \subseteq gl(V)$ is said to be almost algebraic [6, p. 98] given that the semisimple and nilpotent parts of every

Copyright © 1974, American Mathematical Society

Received by the editors April 12, 1973.

AMS (MOS) subject classifications (1970). Primary 17B35; Secondary 16A08.

Key words and phrases. Gelfand-Kirillov conjecture, quotient field of Lie algebra, Weyl algebra.

 $X \in g$ belong to g. g is almost algebraic if it is algebraic [7, Lemma 2, §3]. The proofs of the following two lemmas are straightforward (cf. [8, in particular, Theorem 4]).

Lemma 2.1. Let $g \subset gl(V)$. Given $X \in g$ semisimple (resp. nilpotent) then ad X is semisimple (resp. nilpotent).

Lemma 2.2. Let g be solvable and almost algebraic. Then $g = g_1 \oplus g_2$ where g_1 (resp. g_2) is the commutative subalgebra (resp. nilpotent ideal) of g spanned by the semisimple (resp. nilpotent) elements of g.

Proof. Let g_1 (resp. g_2) denote a maximal abelian subalgebra of semisimple (resp. the set of all nilpotent) elements of g. Certainly $g_1 \cap g_2 =$ {0}. By Lie's theorem, it follows that g_2 is a linear space and $g_2 \supset [g, g]$, so g_2 is an ideal. Set $a = g_1 \oplus g_2$. a is an invariant subspace of ad g_1 , so by Lemma 2.1 and the choice of g_1 , a is complemented in g. That is $g = a \oplus b$, with $[g_1, b] \subset b$. Yet $b \cap g_2 =$ {0}, so $[g_1, b] =$ {0}. Since g is almost algebraic, we may write for each $X \in b$: X = Y + Z; $Y, Z \in g$, where Y, Z are the semisimple and nilpotent parts of X. We have $[g_1, Y] =$ {0}, so Y = 0, by the maximality of g_1 . Then Z = 0, since $b \cap g_2 =$ {0}. Hence b = {0}, and a = g as required.

Given $g \,\subseteq gl(V)$, let S(V) denote the symmetric algebra over V and K(V) its quotient field. Define the action of g on S(V) by derivation and on K(V) by the rule $X\xi = -a^{-2}(Xa)b + a^{-1}(Xb)$ where $\xi = a^{-1}b \in K(V)$, $a, b \in S(V)$. More generally we wish to consider the possibility of there being certain additional algebraic relations in S(V). Let I denote the (two-sided) ideal generated by finitely many g annulled elements of K(V). Assume I prime. Set S = S(V)/I and K its quotient field. Define the subfield K_0 of K annihilated by g through

$$K_0 = \{\xi \in K \colon X \xi = 0, \text{ for all } X \in g\}.$$

Let deg K denote the degree of transcendence of K.

Theorem 2.3. Suppose $g \,\subseteq gl(V)$ is solvable and almost algebraic. Define K, K_0 as above. Then K is a pure transcendental extension of K_0 . Further, given g nilpotent, deg K - deg $K_0 \leq \dim g$.

Proof. Let $g = g_1 \oplus g_2$ be the decomposition of g defined in the conclusion of Lemma 2.2. Set $T = \{a \in S : g_2 a = 0\}$. Then $gT \subset T$, since g_2 is an ideal. Let L denote the quotient field of T and L_0 the subfield of

L annihilated by g_1 . Then $K_0 = L_0$. Indeed $K_0 \supset L_0$ is immediate. On the other hand given $\xi \in K_0$, write $\xi = a^{-1}b$: $a, b \in S$. Suppose that there exists a $Z \in g_2$ such that $Za \neq 0$. Since $Z \xi = 0$, we obtain $\xi = (Za)^{-1}Zb$. Since g_2 is nilpotent it follows that we may write $\xi = c^{-1}d$: $c, d \in T$. Hence $K_0 \subset L_0$ and so $K_0 = L_0$ as required.

Next show that L is a pure transcendental extension of L_0 . Let $S^i \,\subset S$ denote the linear subspace of homogeneous polynomials of degree *i*. Set $T^i = T \cap S^i$. For each *i*, S^i and T^i are finite dimensional, g invariant and respectively define a direct sum decomposition of S and T.

Set dim $g_1 = r$, dim $g_2 = s$. Let $\{Y_i : i = 1, 2, \dots, r\}$ be a basis for g_1 . Let spec (S) (resp. spec (T)) be the set of all r-tuples λ such that

$$Y_{i}\xi = \lambda_{i}\xi: \quad i = 1, 2, \cdots, r,$$

 $\xi \in S(\lambda)$ (resp. $T(\lambda)$) where $S(\lambda)$, $T(\lambda)$ denote the corresponding eigensubspaces. These subspaces define a direct sum decomposition of S and T respectively. Define $L(\lambda)$, spec (L) analogously. Since I is prime a monomial cannot vanish in S. Hence spec (S) and spec (T) are closed under the addition of r-tuples. We remark that spec (S) \supset spec (T) and that this may be strict inclusion. Further spec (S) is generated over the integers by spec (S¹). Let W be the vector space generated by spec (S¹) over the rationals. Set $t = \dim W \leq \dim V$. Let $\{\lambda_j \in \text{spec}(S^1)\}$ be a basis for W. Let u be the common divisor for the rational coefficients of the remaining $\mu_j \in \text{spec}(S^1)$ expressed in this basis. Then for all $\lambda \in \text{spec}(T)$ we have

(2.2)
$$\lambda = \frac{1}{u} \sum_{j=1}^{u} u_j \lambda_j$$

for suitable integers u_j . Let M be the module over the integers generated by spec (T). With respect to (2.2) define a map $\pi: M \to \mathbb{Z}^t$, through $\pi(\lambda) = \mathbf{u}$. Then M can be considered as a submodule of \mathbb{Z}^t . Hence M is a finitely generated free \mathbb{Z} module. Let $\{\Lambda_a\}$ be a basis for M. Taking products of elements of T with integer exponents gives $M = \operatorname{spec}(L)$, so there exist $y_a \in$ $L(\lambda)$ such that $Y_i y_a = \Lambda_{ia} y_a$ for all i, α . Further by definition of $\{\Lambda_a\}$ distinct monomials in the y_a belong to distinct eigensubspaces $L(\lambda)$. Hence they are algebraically independent over L_0 . Now given $u, v \in T(\lambda), uv^{-1} \in$ L_0 , so u = bv for some $b \in L_0$. Recalling the direct sum decomposition of T, it follows that $L + L_0(y_1, y_2, \dots, y_t)$: $t \leq \dim V$ as required.

Next show that K is a pure transcendental extension of L. In this it is convenient to set $g_1 = b$, $g_2 = g$. Since g is nilpotent, there exists an upper

central series $\{0\} = C_1 \subset C_2 \subset C_3 \subset \cdots \subset C_l = g$, for g [6, p.29]. (Recall that C_i is the maximal ideal in g such that $[g, C_i] \subset C_{i-1}$.) That $[h, C_i] \subset C_i$, follows by induction on i and the relation $[g, [h, C_i]] \subset C_{i-1} + [h, C_{i-1}]$. By definition of h and Lemma 2.1, $ad_g h$ is a commutative Lie algebra of semisimple elements. Hence there exists a central descending series $g = g_1 \supset g_2 \supset \cdots \supset g_{s+1} = \{0\}$: $s = \dim g$, for g with the property that for each integer k there exists $Z_k \in g_k$, $Z_k \notin g_{k+1}$ such that Z_k is an eigenvector for $ad_g h$. (Recall also that $\dim g_k = \dim g_{k+1} + 1$ and $[g, g_k] \subset g_{k+1}$, for all k.)

Let L_k denote the subfield of K annihilated by g_k . Then $L = L_1 \subset L_2 \subset \cdots \subset L_{s+1} = K$. Let \widetilde{S} be the maximal subalgebra of K on which the elements of g are locally nilpotent derivations. Set $\widetilde{S}_k = L_k \cap \widetilde{S}$ and $S_k = L_k \cap S$. Certainly \widetilde{S}_k contains the subalgebra of K generated by L and S_k . In fact we shall see that it coincides with it.

We show that for each k either $L_{k+1} = L_k$ or $L_{k+1} = L_k(a)$ for some $a \in S_{k+1}$. This will prove the theorem with deg $K - \deg L \leq \dim g$ as required.

Verify that $Z_i S_j \subset S_j$, $Z_i \widetilde{S}_j \subset \widetilde{S}_j$ and $Z_i L_j \subset L_j$ for all *i*, *j*. We show that L_k is the quotient field of S_k by induction on *k*. By definition $K = L_{s+1}$ is the quotient field of $S = S_{s+1}$. So, given $\xi \in L_k \subset L_{k+1}$, we may write by the induction hypothesis $\xi = a^{-1}b$: $a, b \in S_{k+1}$ Suppose that $Z_k a \neq 0$, then $Z_k \xi = 0$ gives $\xi = (Z_k a)^{-1} Z_k b$. Then by the local nilpotency of Z_k on S_{k+1} we may choose $a, b \in S_k$.

Finally suppose that $L_{k+1} \neq L_k$. Then there exists $a' \in S_{k+1}$ such that $Z_k a' \neq 0$ so by the local nilpotency of Z_k on S_{k+1} , there exists $a'' \in S_{k+1}$ such that $Z_k a'' = b \in S_k$: $b \neq 0$. Now suppose that $Z_i b \neq 0$, for some *i*. Then $Z_k(Z_i a'') = [Z_k, Z_i]a'' + Z_i(Z_k a'') = Z_i b \neq 0$, since $[Z_k, Z_i] \in g_{k+1}$ and $a'' \in S_{k+1}$. Hence by the local nilpotency of Z_i on S_k we may choose $a''' \in S_{k+1}$ such that $Z_k a''' = b' \in L$: $b' \neq 0$. Then there exists $a \in \mathcal{F}_{k+1}$ such that $Z_k a''' = b' \in L$: $b' \neq 0$. Then there exists $a \in \mathcal{F}_{k+1}$ such that $Z_k a''' = b' \in L$: $b' \neq 0$. Then there exists $a \in \mathcal{F}_{k+1}$ such that $Z_k a'' = b' \in L$; $b' \neq 0$. Then there exists $a \in \mathcal{F}_{k+1}$ such that $Z_k a'' = b' \in L$; $b' \neq 0$. Then there exists $a \in \mathcal{F}_{k+1}$ such that $Z_k a = 1$. Let $\alpha_n a^n + \cdots + \alpha_0$: $\alpha_i \in L_k, \alpha_n \neq 0$, be the minimal polynomial of a in L_k . The relation $Z_k a^i = ia^{i-1}$ contradicts its minimality, so a is transcendental over L_k . Further for any $c \in \mathcal{F}_{k+1}$, we have $Z_k^n c = d \in \mathcal{F}_k$: $d \neq 0$, for some nonnegative integer n. Then $e = c - (n!)^{-1}a^n d$ satisfies $Z_k^{n-1}e = f \in \mathcal{F}_k$. Hence by induction $\mathcal{F}_{k+1} = \mathcal{F}_k[a]$. Then $L_{k+1} = L_k(a)$, which proves the theorem.

Preserve the notation used in the proof of Theorem 2.3. For each $k = 1, 2, \dots, s+1$; $\lambda \in \text{spec}(S)$ (resp. $\lambda \in \text{spec}(T)$) set $S_k(\lambda) = S(\lambda) \cap S_k$ (resp. $\widetilde{S}_k(\lambda) = T(\lambda) \cap \widetilde{S}_k$). Recall that by construction $[Y_i, Z_j] = \mu_{ij}Z_j$: $\mu_{ij} \in \mathbb{C}$. Let μ_j denote the *r*-tuple with entries μ_{ij} . Lemma 2.4. For all $j, k = 1, 2, \dots, s + 1$, (1) $Z_j S_k(\lambda) \subset S_k(\lambda + \mu_j)$: for all $\lambda \in \text{spec}(S)$, (2) $Z_j S_k(\lambda) \subset S_k(\lambda + \mu_j)$: for all $\lambda \in \text{spec}(T)$, (3) $S_k = \bigoplus_{\lambda \in \text{spec}(S)} S_k(\lambda)$ (direct sum).

Proof. (1) and (2) are clear. (3) holds for k = s + 1 since $S_{s+1} = S$ and S is a direct sum of its eigensubspaces. Assume (3) holds for all k > j. To show it holds for k = j recall that $S_j \in S_{j+1}$ and apply (1).

Corollary 2.5. Suppose $S_{k+1} \neq S_k$ for some $k \in (1, 2, \dots, s)$. Then there exists $\lambda_k \in \text{spec}(T)$ such that $\widetilde{S}_{k+1} = \widetilde{S}_k[a_k]$ with $a_k \in \widetilde{S}_{k+1}(\lambda_k)$.

Proof. Apply Lemma 2.4 to the latter half of the proof of Theorem 2.3, noting that we may choose $a' \in S_{k+1}(\lambda)$ for some $\lambda \in \text{spec}(S)$.

The conclusion of Theorem 2.3 shows that we may write $K = K_0(y_1, y_2, \dots, y_i)$. Assume $t \le \dim g$; let $\{T_i\}$: $i = 1, 2, \dots, t$, be a subbasis of a basis for g and denote by B the matrix with entries $T_i y_j$. Recall that $g = g_1 \oplus g_2$ and let $\{Y_i\}, \{Z_j\}$ be the bases for g defined in the proof of Theorem 2.3. Assume $\{Y_\alpha\}$: $\alpha = 1, 2, \dots, \gamma, \{Z_\mu\}$: $\mu = 1, 2, \dots, \rho$ to be subbases on which B is nondegenerate. Further assume that

(2.3)
$$Z_k \in \{Z_\mu\} \text{ given } L_{k+1} \neq L_k$$

Following Theorem 2.3 introduce subsets $\{y'_{\alpha}\}, \{y''_{\mu}\}$ of y_i such that $L = K_0(y'_1, y'_2, \dots, y'_{\gamma'}), K = L(y''_1, y''_2, \dots, y''_{\rho'})$. Note that $\gamma + \rho = \gamma' + \rho' = t$. By (2.3) $\rho' \leq \rho$. Since $y'_{\alpha} \in L$, $B_{\mu\alpha} = 0$ for the given ranges of μ , α . Then det $B \neq 0$, implies $\rho' \geq \rho$. Hence $\rho' = \rho$ and $\gamma' = \gamma$. Then the $B_{\mu\nu}$ are the entries of a square matrix which is upper triangular, has ones on the diagonal, and its remaining entries lie in \Im which was shown to be identical with $L[y''_1, y''_2, \dots, y''_{\rho}]$. Since the $y'_{\alpha} \in L$, it follows that det $B \in L$. As was shown, the y_i may be chosen as eigenfunctions of the elements of g_1 . Then $B_{\alpha i} = \lambda_{\alpha i} y_i : \lambda_{\alpha i} \in \mathbb{C}$. Let B^{-1} denote the inverse of B. Then $B_{\alpha\beta}^{-1} \in L$, for all α , β , and B^{-1} defines a matrix which is upper triangular, has ones on the diagonal, and its remaining entries lie in \Im . Finally $B_{\alpha\mu}^{-1}$ are polynomials in the y''_{ν} over L with no constant terms.

Given $a \in K$, then

(2.4)
$$Za = b \in S$$
 for all $Z \in g_2$ implies that $a \in S$.

Indeed by definition of \mathfrak{F} , there exists for each $Z \in g_2$ a positive integer m such that $Z^m b = 0$. But then $Z^{m+1}a = 0$ which implies that $a \in \mathfrak{F}$.

~

We remark that the above conclusions hold should \mathbb{C} be replaced by an arbitrary algebraically closed commutative field of characteristic zero.

3. Proof of conjecture.

Theorem 3.1 [4, Proposition III.8, Theorem III.9]. Given g solvable, then

(1) there exist pairwise commutative elements $A_a \in Ug: \alpha = 1, 2, \dots, s$, algebraically independent over C. Set $A = C[A_1, A_2, \dots, A_s]$ and let K denote its quotient field. The $[g, K] \subset K$, and K is a maximal commutative subfield of Dg;

(2) there exist $T_i \in g: i = 1, 2, \dots, t$, algebraically independent over K such that $(1, T_1, T_2, \dots, T_t)$ is a basis for the extension \mathfrak{F} of g by K. Further $Dg = D\mathfrak{F}$ and $[T_i, A_a] = A_{ia} \in K$ where the matrix A with entries A_{ia} is of rank t in K.

(3) dim $C(Dg) \leq s - t$ and $C(Dg) \subset K$, where C denotes centre.

Set $K_0 = C(Dg)$. Set $m = \dim g$, $n = \frac{1}{2} \dim \Omega$, where Ω is an orbit of maximal dimension in the dual g^* of g [1].

Theorem 3.2. Suppose g is solvable and algebraic. Define m, n as above. Then Dg is isomorphic to $D_{n,k}$ with k = m - 2n.

Proof. By [1] (cf. [9, Lemma 7]), $\text{Dim}_{\mathbb{C}}C(Dg) = m - 2n = k$. Since g is algebraic, (2.1) applies to the algebra A defined in (1) above. Hence $2s \leq 2m - 2n = m + k$. Yet $m = \dim g = s + t$, where t is defined in (2). Then by (3), $2s \geq m + k$. Hence k = s - t and n = t. Further $t = \deg K - \deg K_0$.

Since $A \ \epsilon \ Ug$, the space V generated by $\operatorname{ad} g$ on A is finite dimensional. Further the algebra S generated by V, being a subalgebra of Ug, has no zero divisors. By (1) its quotient field is precisely K which is commutative. Since g is solvable algebraic, it follows by Lemma 2.1 that adg considered as a subalgebra of gl(V) is solvable and almost algebraic. Recalling (1), (3) above, Theorem 2.3 applies to show that $K_0(y_1, y_2, \cdots, y_t)$. Further by [10], there exist $z_i \in C(Dg)$, such that $K_0 = C(z_1, z_2, \cdots, z_k)$. Set

$$B_{\alpha} = \begin{cases} y_{\alpha}: & \alpha = 1, 2, \cdots, t, \\ z_{\alpha-t}: & \alpha = t+1, \cdots, s. \end{cases}$$

Define $B'_{ia} = \sum_{\beta} A_{i\beta} (\partial B_a / \partial A_{\beta})$. Clearly rank $B' = \operatorname{rank} A = t$ in K by (2) above. Further define a $t \times t$ matrix B with entries

$$B_{ij} = [T_i, y_j] = B'_{ij}; \quad i, j = 1, 2, \cdots, t.$$

Then det $B \neq 0$, since $B'_{i\alpha} = 0$: $\alpha > t$.

Set $x_i = \sum_i B_{ii}^{-1} T_i$. By construction

$$[x_i, y_j] = \delta_{ij} \mathbf{1},$$

whereas

(3.3)
$$[y_i, y_j] = 0,$$

since $y_i \in K$. Note that (3.2) implies $(adx_i)u = \partial/\partial y_i(u)$ for all $u \in K$. Then by (3.2) and (3.3): $[[x_i, x_i], y_k] = 0$ for all *i*, *j*, *k*. Hence

(3.4)
$$[[x_i, x_j], A_{\alpha}] = 0$$

for all *i*, $j = 1, 2, \dots, t$, $\alpha = 1, 2, \dots, s$. Yet $x_i \in \mathfrak{F}$ so by the maximality of K: $[x_i, x_j] \in K$. Set $[x_i, x_j] = f_{ij}$. By antisymmetry, (3.2) and the Jacobi identity applied to $[[x_i, x_j], x_k]$ we obtain

(3.5)
$$\begin{aligned} & f_{ij} + f_{ji} = 0, \\ & \partial_k f_{ij} + \partial_i f_{jk} + \partial_j f_{ki} = 0, \end{aligned}$$

where ∂_k denotes differentiation in y_k . The theorem is proved if we can show that there exist $g_i \in K$, such that

$$(3.6) f_{ij} = \partial_i g_j - \partial_j g_i,$$

for all *i*, *j*. For then replacing x_i by $x_j - g_j$, we obtain

$$[x_{i}, x_{j}] = 0.$$

Then by (2) above the x_i , y_i , z_j : $i = 1, 2, \dots, t$, $j = 1, 2, \dots, k$, generate Dg. Recalling that $z_j \in K_0$, it follows by (3.2), (3.3) and (3.7) that Dg is isomorphic to $D_{n,k}$ as required.

Let A_r be the *r*th generator of *K* constructed in the recurrence procedure of [4, Lemma III.4]. Set $K_1 = \mathbb{C}$, $K_{r+1} = K_r(A_r)$. Let $\{X_i\}$ be some basis for *g*. The cobase $\{T_i\}$ is obtained as a subbasis of $\{X_i\}$ by eliminating at each step one X_i for which $\alpha_i \neq 0$ in the relation: $A_r = \sum_j \alpha_j X_j$: $\alpha_j \in K_r$. With $g = g_1 \oplus g_2$, choose the bases $\{Y_i\}$, $\{Z_j\}$ for g_1, g_2 described in §2. Should $\alpha_i \neq 0$, for some Y_i , eliminate the Y_i . Otherwise eliminate the Z_j belonging to the smallest *j* for which $\alpha_j \neq 0$. Let $\{Y_a\}, \{Z_\mu\}$ denote the resulting cobase. By construction if Z_k is not in the cobase

(3.8)
$$Z_{k} = \sum_{\mu > k} \alpha_{k\mu} Z_{\mu} + \beta_{k} : \alpha_{k\mu}, \beta_{k} \in K.$$

Suppose $L_{k+1} \neq L_k$. By Theorem 2.3, $L_{k+1} = L_k(a_k)$ where $[Z_k, a_k] = 1$ and $a_k \in L_{k+1}$. This contradicts (3.8). Hence (2.3) holds for $\{Z_{\mu}\}$. Further the conclusion $\rho' = \rho$ (established in the discussion following (2.3)) implies that

(3.9)
$$Z_k \in \{Z_k\}$$
 if and only if $L_{k+1} \neq L_k$.

Recalling the choice of the cobase substitution from (3.8) gives

$$\begin{bmatrix} Y_{\alpha}, Y_{\beta} \end{bmatrix} = 0, \qquad \begin{bmatrix} Y_{\alpha}, Z_{\mu} \end{bmatrix} = C_{\alpha\mu} Z_{\mu}; \qquad C_{\alpha\mu} \in \mathbb{C},$$
$$\begin{bmatrix} Z_{\mu}, Z_{\nu} \end{bmatrix} = \sum_{\lambda} \gamma_{\mu\nu}^{\lambda} Z + \Gamma_{\mu\nu}; \qquad \gamma_{\mu\nu}^{\lambda}, \Gamma_{\mu\nu} \in K.$$

We show that $\Gamma_{\mu\nu} \in \mathcal{F}$. By (2.4) and the nilpotency of g_2 it suffices to show that $\gamma^{\lambda}_{\mu\nu} \in \mathcal{F}$. Now by (3.9), recalling the definition of the a_k , we have

$$\gamma_{\mu\nu}^{\lambda} = [[Z_{\mu}, Z_{\nu}], a_{\lambda}] - \sum_{\sigma=1}^{\lambda-1} \gamma_{\mu\nu}^{\sigma} [Z_{\sigma}, a_{\lambda}].$$

Then, using (2.4), induction on λ proves the assertion.

Construct the y_i and the x_i as above. Then the only contribution to $[x_i, x_j]$ comes from $\Gamma_{\mu\nu}$. Recalling (§2) that $B_{i\mu}^{-1} \in \mathcal{F}$ we obtain

(3.10)
$$[x_i, x_j] = \sum_{\mu\nu} B_{i\mu}^{-1} B_{j\nu}^{-1} \Gamma_{\mu\nu} \in \mathcal{F}.$$

Set $x'_{a} = \sum_{i} B_{ai}^{-1} T_{i}$, $x''_{\mu} = \sum_{i} B_{\mu i}^{-1} T_{i}$. Since by (3.10), the f_{ij} are polynomials in the y''_{μ} over L, we may integrate (3.5) in the y''_{μ} to obtain functions $g_{i} \in S$ such that the $\overline{x}_{i} = x_{i} - g_{i}$, satisfy

$$(3.11) \qquad \qquad [\overline{x}_i, \overline{x}_\mu] = 0,$$

for all *i*, μ . This integration is performed as follows. Assume $\rho \ge 1$ and identify y''_{ρ} with y_t . Set $g_t = 0$ and $g_i = \int_0^{y_t} f_{ti} dy_t$, for $1 \le i < t$. By (3.10) f_{ti} is polynomial in y_t and so $g_i \in \mathcal{F}$ for all *i*. Set $f'_{ij} = f_{ij} - (\partial_i g_j - \partial_j g_i)$. Then $f'_{ij} \in \mathcal{F}$ and satisfies (3.5). $f'_{ti} = 0$ by construction, so by (3.5) $f'_{it} = 0$ and $\partial_t f'_{ij} = 0$ for all *i*, *j*. Then (3.11) obtains by successive integration in each y''_{μ} . Note further that g_i as polynomials in the y''_{μ} over *L* are chosen to have no constant terms.

We show that the $[\bar{x}_{\alpha}, \bar{x}_{\beta}]$, as polynomials in the y_{μ}'' over *L*, have no constant terms. This property was demonstrated in §2 for the $B_{\alpha\mu}^{-1}$. It also holds for the $[Y_{\gamma}, g_{\alpha}]$ by choice of the g_{α} and because the y_{μ}'' are eigen-

vectors of ad Y_{γ} where (ad Y_{γ}) $L \subset L$ for all γ . It is then sufficient to observe that

$$[\overline{x}_{\alpha}, \overline{x}_{\beta}] = \sum_{\mu\nu} B_{\alpha\mu}^{-1} B_{\beta\nu}^{-1} \Gamma_{\mu\nu} + [x_{\beta}, g_{\alpha}] - [x_{\alpha}, g_{\beta}],$$

where

$$[x_{\beta}, g_{\alpha}] = \sum_{\gamma} B_{\beta\gamma}^{-1} [Y_{\gamma}, g_{\alpha}] + \sum_{\mu} B_{\beta\mu}^{-1} [Z_{\mu}, g_{\alpha}].$$

Yet $[\overline{x}_{\mu'}, [\overline{x}_{\alpha}, \overline{x}_{\beta}] = 0$ by (3.11) and the Jacobi identity, so $[\overline{x}_{\alpha}, \overline{x}_{\beta}] \in L$ by (3.2). Hence $[\overline{x}_{\alpha}, \overline{x}_{\beta}] = 0$. Combined with (3.11) it follows that the required functions g_i exist and the theorem is proved.

Remarks. The theorem evidently fails should $k - \deg K_0$ be an odd integer. Yet given $\deg K_0 = k$, it is sufficient that g be almost algebraic. In this connection see [2, §8] for examples. If g is not almost algebraic the integration of (3.5) may fail in K. For example, let e_{ij} denote the usual canonical basis in Hom (\mathbb{C}^5 , \mathbb{C}^5). Set $a_1 = e_{12} - e_{55}$, $a_2 = e_{23} - e_{44}$, $y_1 = e_{15}$, $y_2 = e_{14}$, $z = e_{13}$. Let $h \subset gl(\mathbb{C}^5)$ be the Lie algebra spanned by these elements. In h we have the bracket relations $[a_1, a_2] = z$, $[a_1, y_1] = y_1$, $[a_2, y_2] = y_2$ and all other brackets vanish. h is evidently solvable, yet not almost algebraic. Set $K = \mathbb{C}(y_1, y_2, z)$. Then $K_0 = \mathbb{C}(z)$, $x_1 = y_1^{-1}a_1$, $x_2 = y_2^{-1}a_2$. Equations (3.1) and (3.2) hold; but $f_{12} = z/y_1y_2$ and (3.5) does not admit integration in K.

Finally given g nilpotent, it is easy to see that the common divisor of x_i , y_i , z_i lies in C(Ug), so we have incidentally proved [2, Lemma 9].

Acknowledgements. This paper was presented at a meeting on enveloping algebras of Lie algebras held at the Mathematisches Forschungsinstitut, Oberwolfach. Simultaneously two further independent and different proofs of the conjecture were given by J. C. McConnell [11] and W. Borho [12]. I should also like to thank the referee for some suggested improvements and corrections to the original manuscript.

REFERENCES

1. I.M. Gel'fand and A.A. Kirillov, Fields associated with enveloping algebras of Lie algebras, Dokl. Akad. Nauk SSSR 167 (1966), 503-505 = Soviet Math. Dokl. 7 (1966), 407-409. MR 33 #4108.

2. _____, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. No. 31 (1966), 5-19. MR 34 #7731.

3. _____, Structure of the Lie field connected with a split semisimple Lie algebra, Funkcional. Anal. i Priložen. 3 (1969), no. 1, 7-26. (Russian) MR 39 #2827.

4. X. H. Nghiêm, Bull. Sci. Math. 96 (1972), 111.

5. A. Joseph, Symplectic structure in the enveloping algebra of a Lie algebra, Bull. Math. Soc. France (to appear).

6. N. Jacobson, *Lie algebras*, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 #1345.

7. C. Chevalley, A new kind of relationship between matrices, Amer. J. Math. 65 (1943), 521-531. MR 5, 171.

8. _____, Algebraic Lie algebras, Ann. of Math. (2) 48 (1947), 91-100. MR 8, 435.

9. J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. II, Bull. Soc. Math. France 85 (1957), 325-388. MR 20 #1928.

10. P. Bernat, Sur le corps enveloppant d'une algèbre de Lie résoluble, C.R. Acad. Sci. Paris 258 (1964), 2713-2715. MR 28 #4014.

11. J. C. McConnell, Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture, School of Mathematics, Univ. of Leeds, 1973 (preprint).

12. W. Borho, P. Gabriel and R. Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Math., vol. 357, Springer-Verlag, Berlin, 1973 (Chap. II, §8).

DEPARTMENT OF PHYSICS AND ASTRONOMY, TEL-AVIV UNIVERSITY, RAMAT-AVIV, ISRAEL

Current address: I.H.E.S., 91 Bures sur Yvette, France