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PROOF OF THE GELFAND-KIRILLOV CONJECTURE FOR

SOLVABLE LIE ALGEBRAS

A. JOSEPH

ABSTRACT.   Let g   be a solvable algebraic Lie algebra over the

complex numbers  C   It is shown that the quotient field of the enveloping

algebra of g  is isomorphic to one of the standard fields D    ,,   being

defined as the quotient field of the Weyl algebra of degree n   over C  ex-

tended by k   indeterminates.   This proves the Gelfand-Kirillov conjec-

ture for g  solvable.

1. Introduction.   Let g  be an algebraic Lie algebra over the complex

numbers C.   Let  Ug  denote the enveloping algebra of g   and Dg  the

quotient field of Ug.    With «, k nonnegative integers, let A     ,   denote the

Weyl algebra of degree n  over C  extended by k  indeterminates [l].   Let

D    ,   denote the quotient field of A     ,.   It has been conjectured [l]—[3]
n ,k * n ,lt '

that Dg  is isomorphic to D    ,   for suitable n, k.   This has been demon-

strated for g nilpotent and for g   semisimple if either g = sl(r) [2] or Dg

is given an extended centre [3].   Here we prove the conjecture for g   solv-

able and algebraic.   The analysis is based on the work of Nghiêm [4\ and

the theorem proved below.

2. A transcendence theorem.   Let g  be a finite dimensional Lie alge-

bra over C  and A   an arbitrary commutative subalgebra of  Ug.   Let  Dim-

denote the dimensionality introduced by Gelfand and Kirillov [l].   We have

shown [5, Theorem l.l] that

(2.1) DimC A - dim S - Vi dim ^'

where fi  is an orbit of maximal dimension in the dual g* of g [l].

Recall that if g  is algebraic, then in particular g C gl(V)  for some

finite dimensional vector space  V  over C.   g C gl(V)  is said to be almost

algebraic [6, p. 98] given that the semisimple and nilpotent parts of every
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2 A.JOSEPH

X £ g belong to g. g is almost algebraic if it is algebraic L7, Lemma 2,

§3]. The proofs of the following two lemmas are straightforward (cf. L8,

in particular, Theorem 4]).

Lemma 2.1. Let g C gl(v). Given X eg semisimple (resp. nilpotent)

then  ad   X  is semisimple (resp. nilpotent).

Lemma 2.2. Let g be solvable and almost algebraic. Then g = g ©

g where g (resp. g ) is the commutative suba Igebra (resp. nilpotent ideal)

of g spanned by the semisimple (resp. nilpotent) elements of g.

Proof.   Let g.   (resp. g.) denote a maximal abelian subalgebra of semi-

simple (resp. the set of all nilpotent) elements of g.   Certainly g. O g    =

10}.   By Lie's theorem, it follows that g2  is a linear space and g2 ^ t/3> gJ>

so g2  is an ideal.   Set a = g^ ® g..   a is an invariant subspace of ad g,,

so by Lemma 2.1 and the choice of g., a is complemented in g.   That is

g = a © b,  with [gj, b] C b.   Yet b n g2 = \0\,  so [gy b] - iOi.   Since g   is

almost algebraic, we may write for each  X € b: X = Y + Z; Y, Z eg, where

Y, Z  are the semisimple and nilpotent parts of X.   We have  [g,,  V] = ! Oi,

so   Y = 0,  by the maximality of g   .   Then Z = 0,  since b O g   = | 0\.   Hence

b = iOi,  and a = g as required.

Given g Cgl(V), let S(v)  denote the symmetric algebra over  V  and

K(V)  its quotient field.   Define the action of g  on S(V) by derivation and on

K(V) by the rule Xcf = - a~ 2(Xa)b + a~l(Xb) where ¿; = a~lb e K(v),a, b e

S(V).   More generally we wish to consider the possibility of there being

certain additional algebraic relations in S(V).   Let  / denote the (two-sided)

ideal generated by finitely many g  annulled elements of  K(V).   Assume /

prime.   Set S m S(V)/1  and  K its quotient field.   Define the subfield  KQ oi

K annihilated by g  through

K0= {£e K: XÇ= 0, for all X e g!.

Let  deg K denote the degree of transcendence of K.

Theorem 2.3.   Suppose g C gl(V) is solvable and almost algebraic.   De-

fine  K, K    as above.    Then  K is a pure transcendental extension of Kn.

Further, given g nilpotent,   deg K — deg K   < dim g.

Proof.   Let g = g. © g    be the decomposition of g defined in the con-

clusion of Lemma 2.2.   Set T =\a e S: g a = Oi.   Then gT C T,  since g2

is an ideal.   Let  L  denote the quotient field of  T and  L     the subfield of
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L  annihilated by  g..  Then  KQ = L_.  Indeed  KQ D L.  is immediate. On the

other hand given £e K     write  ff= a~lb: a, be S. Suppose that there exists

a Zeg2  such that Zaf 0. Since  Zf= 0, we obtain rf=(Za)     Z/3. Since

g2  is nilpotent it follows that we may write  £- c~  d: c, de T. Hence

K. C LQ and so  Kg = LQ  as required.

Next show that  L  is a pure transcendental extension of L      Let  S* C S

denote the linear subspace of homogeneous polynomials of degree   /'.  Set

T1 = T O S1.  For each  », Sl and  T* are finite dimensional,  g  invariant and

respectively define a direct sum decomposition of S and  T.

Set dimg, = r, dim g   = s.  Let Í V. : i = 1, 2, • • •, ri be a basis for gr

Let spec (S) (resp. spec(T)) be the set of all r-tuples À such that

V\£-A.£:       i-l,2,...tr,

(f e  S(A) (resp. T(A))  where  S(A),  T(X)  denote the corresponding eigensub-

spaces. These subspaces define a direct sum decomposition of S and   T

respectively. Define   L(A), spec(L) analogously. Since  / is prime a monomial

cannot vanish in  S.  Hence  spec (S) and  spec(T) are closed under the addi-

tion of r-tuples. We remark that  spec (5) D spec (T) and that this may be

strict inclusion. Further spec (S) is generated over the integers by  spec (S ).

Let W be the vector space generated by spec (S ) over the rationals. Set

t = dim W < dim V. Let \\. e spec (51)! be a basis for W.  Let u be the com-

mon divisor for the rational coefficients of the remaining fi. e spec (5 ) ex-

pressed in this basis. Then for all Xe spec (T) we have

(2.2) A = èÎ>;\
z' = i

for suitable  integers  u.,  Let  M be the module over the integers generated

by spec(T).  With respect to (2.2) define a map 77: M —>  Z':,  through n(X) = u.

Then  M can be considered as a submodule of  Z'.  Hence  M  is a finitely gen-

erated free  Z module. Let ÍAai be a basis for M.  Taking products of ele-

ments of  T with integer exponents gives M = spec(L),  so there exist ya e

L(A) such that  Y .ya = A.aya for all /', a.  Further by definition of !Aai dis-

tinct monomials in the  ya belong to distinct eigensubspaces  L(À).  Hence

they are algebraically independent over  LQ.  Now given  u, v e T(X), uv~    £

Ln, so  u = bv for some   b e L  . Recalling the direct sum decomposition of T,

it follows that  L + L Ay , y ,. . •, y); t < dim V as required.

Next show that  K is a pure transcendental extension of  L.  In this it is

convenient to set g: = h, g2 = g-  Since  g is nilpotent, there exists an upper
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central series  iOi = Cj C C2 C C} C • • •  C C; = g, for g [6, p.29]. (Recall

that  C\ is the maximal ideal in g  such that [g, C;] C C-_,.) That [h, C.] C

C¿,  follows by induction on  z  and the relation [g, [h, C¿]] C C,-_ i + [A,  C-,].

By definition of  // and Lemma 2.1,  ad  h  is a commutative Lie algebra of

semisimple elements. Hence there exists a central descending series  g = g, D

g2 D • • •  D gs + i = Ï 0 i : s = dimg,  for g with the property that for each integer

k there exists Zfe £gk, Zfe ¿gfe + ,  suchthat Z^  is an eigenvector for ad  h.  (Re-

call also that dimg^ = dimg^j + 1  and [g, gk] C gk + l,  for all  k.)

Let  Lk denote the subfield of  K annihilated by gfe.  Then  L= Lj C

L2 C • • • C L   +, = K.  Let  S   be the maximal subalgebra of  K on which the

elements of g are locally nilpotent derivations. Set S . = L,   O 5   and  S, =

L,  n S.  Certainly S,   contains the subalgebra of K generated by L and S,.

In fact we shall see that it coincides with it.

We show that for each  k  either L, .. = L,   or  L, ,. = L,(a) for some

aeS,+..  This will prove the theorem with deg K - deg L < dimg as required.

Verify that  Z S. C S ., Z S . C S.  and Z.L.CL.  for all »,  /'.   We show that
' »  /        /      » /        / 'it '

L,   is the quotient field of S,   by induction on &.  By definition  K- Ls+.   is

the quotient field of S - Ss+.. So, given  ffL^C i-fe + p  we maY write by the

induction hypothesis  rf =* a~   b: a, b e S, +.    Suppose that Z,a 4 0, then

Z ^ = 0   gives  ç= (Zka)~   Z,b.  Then by the local nilpotency of  Zfe  on

S, +. we may choose  a, b £ S,.

Finally suppose that  L,      ^ L,.  Then there exists a e 5,+1   such that

Z,a  4 0  so by the local nilpotency of Z,   on  Si + 1, there exists  a   e 5fe + 1

such that Z.a" = è e 5. : b 4 0- Now suppose that Z¿¿> ̂  0, for some  /'.  Then

ZrA\Zia")= [Zk, Z^a" + Z{(Zka") = ZL> ¿ 0, since [Zfe, Zf] egj,+I  and

«   e S, ...  Hence by the local nilpotency of  Z. on  S,   we may choose  a' e

Sk + 1  such that Zkd" = b' € L: b' 4 0.  Then there exists a e Sk + l  such that

Z,a = 1. Let  anan + • • • + aQ: a¿e Lfe, a^ ^ 0, be the minimal polynomial

of a in L, .  The relation  Z¿í/' = ia1'1   contradicts its minimality, so  a  is

transcendental over  L,.   Further for any  c e $k + ,,  we have Z^ c = d e 5fc:

d 4 0, for some nonnegative integer w.  Then e = c — («!)     «"J satisfies

Z^_1e = / e 3^. Hence by induction S'J¡.+i = J¿[«].   Then  Lfe + 1 = Lk(a), which

proves the theorem.

Preserve the notation used in the proof of Theorem   2.3.  For each  k =

1, 2, • • •, s + 1; A e spec (S) (resp. A e spec (T)) set Sfe(A) = 5(A) O 5fe

(resp. 3¿,(A) = T(A) ̂  S*k).  Recall that by construction [Y-, Z^l = fi^Z.:

fi.£ C.  Let p. ■ denote the  r-tuple with  entries p...
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Lemma 2.4.  For all j, k = 1, 2, • • • , s + 1,

(1) Z.Sk(\) CSk(X+ftj): for all Aespec(S),

(2) Z.^k(\) C5fe(A + iz;.): for all Aespec(T),

(3) Sk=®\eSPec(S)SkW Wrect sum).

Proof.   (1) and (2) are clear.  (3) holds for k = s + 1  since  S   +, = S

and  S is a direct sum of its eigensubspaces. Assume (3) holds for all k > j.

To show it holds for  k — j recall that  S. C S- + 1  and apply (1).

Corollary 2.5.  Suppose S. +. 4 S,   for some k e (1, 2, • • • , s).   TAe« ///ere

exists A, e spec(T) sz/c¿> z/W J,+. = S.l[öJ  with a, £ Sk + AXk)-

Proof.  Apply Lemma   2.4 to the latter half of the proof of Theorem  2.3,

noting that we may choose a   e 5j!,+1(A)  for some  Ae spec (S).

The  conclusion  of Theorem   2.3  shows  that we  may write   K =

o(yV y2'  ' "i y,)•  Assume  / < dimg;   let {T-S: i = 1, 2, • • • , t,  be a sub-

basis of a basis for g and denote by  B  the matrix with entries   T.y.. Re-

call that g = gj © g2  and let {Y¿!, {Zi be the bases for g  defined in the

proof of Theorem 2.3- Assume ! Ya}: a = 1, 2, • • • , y, \Z  |: a = 1, 2, ■ • •, p

to be subbases on which  B  is nondegenerate. Further assume that

(2.3) Zke{Z¿   êiven    Lk+i¿Lk-

Following Theorem 2.3  introduce subsets  ¡ya \,\y   \ of y ■ such that

L = Ko(>v y2*• "■■ V?» K= L^y'í- y'r '"• y"P'^ Note that y+ p= y' +

p   = t.  By (2.3) P  '< p-   Since yae L, B      = 0 for the given ranges of

u., a. Then det B 4 0,  implies p  > p.  Hence  p   = p and y  = y.  Then the

S       are the entries of a square matrix which is upper triangular, has ones

on the diagonal, and its remaining entries lie in S which was shown to be

identical with  L[y , y     ■ ■ ■ , y ].  Since the  ya e L, it follows that det B e L.

As was shown, the  y ■ may be chosen as eigenfunctions of the elements of

gj.  Then  Bai = Aa-y ■ : \ai e C.  Let  ß-1  denote the inverse of  B.  Then

B~ß e L, fot all  a, ß, and  B        defines a matrix which is upper triangular,

has ones on the diagonal, and its remaining entries lie in  5.  Finally  B~

are polynomials in the  y     over.L  with no constant terms.

Given a e K,  then

(2.4) Za = b e S     for all  Zeg     implies that  aeS.

Indeed by definition of  S,  there exists for each  Z eg    a positive integer

m such that Zmb - 0.   But then  Zm + la = 0 which implies that  a eS.
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We remark that the above conclusions hold should  C  be replaced by an

arbitrary algebraically closed commutative field of characteristic zero.

3.  Proof of conjecture.

Theorem 3.1  [4,   Proposition III.8,  Theorem III.9].   Given g   solvable,

then

(1) there exist pairwise commutative elements A e Ug: o. — 1, 2, • • • , s,

algebraically independent over C. Set A = C[A A ••-, A ] and let K de-

note its quotient field. The [g, K] C K, and K is a maximal commutative sub-

field of Dg;

(2) there exist  T ■ £ g: i = 1, 2, • • •, /,   algebraically independent over K

such that (1, T,,  T2, • • • , T ) is a basis for the extension g of g  by  K.

Further Dg = D'g and [T., A a] *= A-a e K where the matrix A  with entries

A .     is of rank  t  in  K.

(3) dim_C(Dg) < s— t and C(Dg) C K,  where C denotes centre.

Set   KQ = C(Dg). Set  m = dimg, n =  Y2 dim ÎÎ, where 0  is an orbit of

maximal dimension in the dual g*   of g [l].

Theorem 3.2.  Suppose g  is solvable and algebraic. Define m, n  as

above. Then Dg is isomorphic to D    ,   with k = m — 2/z.

Proof.  By [l] (cf. [9,  Lemma 7]), DimcC(Dg)= m - 2« = k. Since g is

algebraic,  (2.1) applies to the algebra A  defined in  (1) above. Hence

2s < 2m - In = m + k.   Yet  m = dimg = s + t, where  t is defined in  (2).   Then

by "(3),   2s > m + k. Hence  k = s — t and  n - t.  Further  t = deg K — deg KQ.

Since A e Ug, the space V generated by ad g on A is finite dimension-

al. Further the algebra S generated by V, being a subalgebra of Ug, has no

zero divisors. By (1) its quotient field is precisely K which is commutative.

Since g is solvable algebraic, it follows by Lemma 2.1 that ad g considered

as a subalgebra of gl(V) is solvable and almost algebraic. Recalling (1), (3)

above, Theorem 2.3 applies to show that K.(y., y2, • ■ • , y ). Further by

[lO], there exist z. e C(Dg),  suchthat KQ= C(zj, z2, ••-, zk). Set

iy   : a=l,2,•••,/,

Define  B¡a = 1 ß A{ß (dBa/dAß). Clearly  rank ß' = rank A = I  in   K by

(2) above. Further define a  / x / matrix  S  with entries

B.. = [T., y] = B'.:      i, j = 1, 2, • • •, t.
ij t     1 11
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Then detß 4 0,  since B¡a = 0: a. > t.

Set x. = 2-ßr.T..   By construction

(3.2) [*., y .] = S..1,

whereas

(3.3) [y., y;.] = 0,

since y. £ K. Note that (3.2) implies  (adx.)z/= d/dy^u) for all  u £ K.   Then

by (3.2) and (3.3): [[*., *.], yfc] = 0 for all  i, j, k. Hence

(3.4) ti*-. *yL AJ = 0

for all /', / = 1, 2, ■ • • , t, a = 1, 2, • • • , s. Yet x. e g so by the maximality

of K: [x., x] £ K. Set [x., x] = /... By antisymmetry, (3-2) and the Jacobi

identity applied to [[x., x ], x,] we obtain

hi + ffi = °-

°'5) %+ dif,k + ty« = o.

where dk  denotes differentiation in y,.  The theorem is proved if we can

show that there exist g¿ e K,  such that

(3-6) ft, = digj - djg.,

for all  i, j.  For then replacing  x. by  x.- g.,  we obtain

(3.7) [x., x\ = 0.

Then by (2) above the x., y., z.: i = 1, 2, • • •, t, j = 1, 2, • • •, k, gen-

erate Dg.  Recalling that z.£ KQ,  it follows by (3-2), (3.3) and (3.7) that

Dg is isomorphic to  D    ¿as required.

Let A    be the  rth generator of  K constructed in the recurrence pro-

cedure of [4, Lemma III.4J.  Set  K1 = C, Kr+1 = Kr(Af).  Let ÍX¿! be some

basis for g.  The cobase  \T.] is obtained as a subbasis of JX-S by elimi-

nating at each step one X. for which  a. ^ 0 in the relation: A   = X.a.X.:

c.£ K . With g= gj© g2, choose the bases {Y¿!, ÍZ.i for gv g2 described

in §2. Should ct.fiO, for some   Y., eliminate the   Y¿.  Otherwise eliminate

the  Z. belonging to the smallest /' for which  a. ^ 0.  Let \Ya\, \Z  \ denote

the resulting cobase. By construction if Z,   is not in the cobase

(3.8) Zk=¿2   V^+rV      <VrVK-
p>k
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Suppose  Lk+l f Lk.  By Theorem  2.3,  Lk + l = LAa,) where [Z,, a^] = 1

and ak£ Lfe + ].  This contradicts  (3-8). Hence  (2.3) holds for \Z  ¡.  Further

the conclusion  p   = p (established in the discussion following (2.3))  implies

that

(3.9) Zke^Z^    if andonly if  Lfe + 1 ̂  Lfe.

Recalling the choice of the cobase substitution from (3.8) gives

tVa.V^-0,      [Y^Zj-C^f       CaßeC,

We show that T     e S.  By  (2.4) and the nilpotency of g,  it suffices to

show that  yyLy£ S. Now by  (3.9),  recalling the definition of the  a,,  we have

y^=[[ZM,Zj,^]-¿   y^Z^al.

CT=1

Then, using (2.4),  induction on  À proves the assertion.

Construct the y. and the  x. as above. Then the only contribution to

[x., x.] comes from T    .  Recalling (§2) that B~   £ S  we obtain

(3.10) ^*,J=EB7;XvlrVve?.

Set x'a = 2.B-/ T., x'' = 2.B-.1 T.. Since by (3.10), the f{j are poly-

nomials in the y over L, we may integrate (3.5) in the y to obtain func-

tions  g  £ S such that the  x . - x ■ — g.,   satisfy

(3.11) [x , x   1=0,

for all  i, p.  This integration is performed as follows. Assume  p > 1  and

identify y"   with y(.  Set g, = 0 and gf = /*'ftidyt,  for   1 < » < t.  By (3.10)

/tJ. is polynomial in y( and so g; e ? for all z. Set /;';. = /„ - Oigj - f?;.gf).

Then /.'. e S and satisfies  (3.5)-  /'• = 0 by construction, so by (3.5) fit = 0

and d,/••= 0 for all  /', ;'.   Then  (3.11) obtains by successive integration in

each y    . Note further that g. as polynomials in the y     over  L  are chosen

to have no constant terms.

We show that the   [x~a, xJ, as polynomials in the y    over L, have no

constant terms. This property was demonstrated in  §2 for the  B~   .  It also

holds for the [Yy, ga]  by choice of the ga and because the y    are eigen-
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observe that

vectors of ad Y     where  (ad Y   ) L C L  for all y.  It is then sufficient to

[*a> *>1 = Z Baf!BßvFßV + l*ß> ëj - L*a' gßl
ßv

l*ß> Sal = Z ß/5y [Yr ' « J + Z V[Z/x' «J-

where

Yet [x , [xa, x^] = 0 by (3.11) and the Jacobi identity, so [xa, xj e L

by (3-2).  Hence  [xa, FJ = 0.  Combined with (3.11) it follows that the re-

quired functions g. exist and the theorem is proved.

Remarks.   The theorem evidently fails should  k — deg Kn  be an odd in-

teger. Yet given deg KQ = k,  it is sufficient that g be almost algebraic. In

this connection see [2, §8]  for examples. If g  is not almost algebraic the

integration of (3.5) may fail in  K.  For example, let  e .. denote the usual

canonical basis in  Hom(C   , C  ).  Set a. = e,2 ~ esv ai = eT\ ~ eAA' ^1 =

e,,, y2 = e       z=e     .  Let  //Cg/(C5)be  the Lie algebra spanned by these

elements. In  h we have the bracket relations  [a     af\ = z, {a., y.] = y.,

{a     y 1 = y2  and all other brackets vanish,  h is evidently solvable, yet not

almost algebraic. Set  K = C(y,, y., z).  Then  KQ = C(z), Xj = y7   "j.

x2 = y~l    aV  Equations  (3.1) and (3-2) hold; but /'2 = z/y■ yy2  and (3.5)

does not admit integration in  K.

Finally given g nilpotent, it is easy to see that the common divisor of

x., y., z. lies in  C(Ug),  so we have incidentally proved [2, Lemma 9L
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