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PROOF OF THE GELFAND-KIRILLOV CONJECTURE FOR
SOLVABLE LIE ALGEBRAS

A. JOSEPH

ABSTRACT. Let g be a solvable algebraic Lie algebra over the
complex numbers C. It is shown that the quotient field of the enveloping
algebra of g is isomorphic to one of the standard fields Dn,k’ being
defined as the quotient field of the.Weyl algebra of degree n over C ex-
tended by k£ indeterminates. This proves the Gelfand-Kirillov conjec-
ture for g solvable.

1. Introduction. Let g be an algebraic Lie algebra over the complex
numbers C. Let Ug denote the enveloping algebra of g and Dg the
quotient field of Ug. With n, & nonnegative integers, let A, i denote the
Weyl algebra of degree n over C extended by & indeterminates [1]. 'Let
Dn,k denote the quotient field of An,k' It has been conjectured [1]-{3]
that Dg is isomorphic to D,  for suitable n, k. This has been demon-
strated for g nilpotent and for g semisimple if either g = si(r) [2] or Dg
is given an extended centre [3]. Here we prove the conjecture for g solv-
able and algebraic. The analysis is based on the work of Nghiém [4] and

the theorem proved below.

2. A transcendence theorem. Let g be a finite dimensional Lie alge-
bra over C and A an arbitrary commutative subalgebra of Ug. Let Dim
denote the dimensionality introduced by Gelfand and Kirillov [1]. We have

shown [5, Theorem 1.1] that
(2.1) Dim. A <dim g - % dim (,

where Q is an orbit of maximal dimension in the dual g* of g[1].
Recall that if g is algebraic, then in particular g C g/(V) for some
finite dimensional vector space V over C. g C gl(V) is said to be almost

algebraic [6, p. 98] given that the semisimple and nilpotent parts of every
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2 A. JOSEPH

X €g belongto g. g is almost algebraic if it is algebraic [7, Lemma 2,
§3]. The proofs of the following two lemmas are straightforward (cf. [8,
in particular, Theorem 4]).

Lemma 2.1. Let g Cgl(V). Given X €g semisimple (resp. nilpotent)

then adg X is semisimple (resp. nilpotent).

Lemma 2.2. Let g be solvable and almost algebraic. Then g=g, &
8, where g, (resp. gz)z's the commutative subalgebra (resp. nilpotent ideal)
of g spanned by the semisimple (resp. nilpotent) elements of g.

Proof. Let g, (resp. g,) denote a maximal abelian subalgebra of semi-
simple (resp. the set of all nilpotent) elements of g. Certainly g N 8, =
{0}, By Lie’s theorem, it follows that g, is a linear space and g, D [g, gl,
so g, is anideal. Set a=g, ® g,. a is an invariant subspace of ad g,
so by Lemma 2.1 and the choice of g, a is complemented in g. That is
g=a ® b, with [gl, b1 Cb. Yet b Ng,= {0}, so [gl, 5] ={0}. Since g is
almost algebraic, we may write for each X €b: X =Y + Z; Y, Z € g, where
Y, Z are the semisimple and nilpotent parts of X. We have [gl, Y] =10},
so Y = 0, by the maximality of g,. Then Z =0, since b6 N g, = {0}. Hence
b=1{0}, and a = g as required.

Given g C gl(V), let S(V) denote the symmetric algebra over V and
K(V) its quotient field. Define the action of g on S(V) by derivation and on
K(V) by the rule X¢=—a~2%Xa)b + a~1(Xb) where £=a~'b € K(V),a b €
S(V). More generally we wish to consider the possibility of there being
certain additional algebraic relations in S(V). 'Let I denote the (two-sided)
ideal generated by finitely many g annulled elements of K(V). Assume I
prime. Set S =S(V)/I and K its quotient field. Define the subfield K, of
K annihilated by g through

Ky=1£e K: X=0, for all X e gl
'Let deg K denote the degree of transcendence of K.

Theorem 2.3. Suppose g C gl(V) is solvable and almost algebraic. De-
fine K, K, as above. Then K is a pure transcendental extension of K,

Further, given g nilpotent, deg K - deg K < dim g.

Proof. Let g = 8, ® g, be the decomposition of g defined in the con-
clusion of Lemma 2.2. Set T=1{a €S: 8,4 = 0}. Then gT C T, since g,

is an ideal. Let L denote the quotient fieldof T and L the subfield of
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L annihilated by g,. Then K = L. Indeed K;D L is immediate. On the
other hand given £¢ K, write £=a~1b: a, be S. Suppose that there exists
a Ze g, such that Za # 0. Since Z£&= 0, we obtain &= (Za)~1Zb. Since
&, is nilpotent it follows that we may write &=c"1d: ¢, de T. Hence
K,CL, and so K;= L as required. .

Next show that L is a pure transcendental extension of L. Let AR
denote the linear subspace of homogeneous polynomials of degree i. Set
Ti= T N Si. For each i, ' and T? are finite dimensional, g invariant and
respectively define a direct sum decomposition of § and T.

Set dimg, =7, dimg, = s. Let {Yl.: i=1,2,---,r} be abasis for g,.
Let spec(S) (resp. spec(T)) be the set of all r-tuples A such that

Y-'§=Af§: l.=1’2’t~0’7‘,

& € S(N) (resp. T(M) where S(A), T(A) denote the corresponding eigensub-
spaces. These subspaces define a direct sum decomposition of $ and T
respectively. Define L(X), spec(L) analogously. Since I is prime a monomial
cannot vanish in S. Hence spec(S) and spec(T) are closed under the addi-
tion of r-tuples. We remark that spec(S) D spec(T) and that this may be
strict inclusion. Further spec(S) is generated over the integers by spec (sh.
Let W be the vector space generated by spec (S') over the rationals. Set
t=dimW <dimV. Let {)\ € spec (S1)} be a basis for W. Let u be the com-
mon divisor for the ratxonal coefficients of the remaining K; € spec (S ) ex-
pressed in this basis. Then for all A€ spec(T) we have

AT

(2.2)

nl»—-

for suitable integers u,. Let M be the module over the integers generated
by spec(T). With respect to (2.2) define a map #: M — Z!, through #(A) = u.
Then M can be considered as a submodule of Z!. Hence M is a finitely gen-
erated free Z module. Let {A,} be a basis for M. Taking products of ele-
ments of T with integer exponents gives M = spec (L), so there exist y, €
L(N) such that Yy, = A, y, for all i, a. Further by definition of {A,} dis-
tinct monomials in the y, belong to distinct eigensubspaces L(X). Hence
they are algebraically independent over L. Now given u, v € T, uww~te
LO, so u=bv for some b € L. Recalling the direct sum decomposition of T,
it follows that L + Lo(yl, Yorttts yt): t <dim V as required.

Next show that K is a pure transcendental extension of L. In this it is

convenient to set g, = h, g, = g. Since g is nilpotent, there exists an upper
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central series {0} = €, CC,CCyC--- CCy=g, forg [6, p.29]. (Recall

that C, is the maximal ideal in g such that [g, C]] CC;_,.) That [5, clc
C,, follows by induction on 7 and the relation [g, [h, CJ1 CC,_, +[h C,;_,l.
By definition of » and Lemma 2.1, adgh is a commutative Lie algebra of
semisimple elements. Hence there exists a central descending series g=g; D
8,2 DBg41 = {0}: s = dimg, for g with the property that for each integer
k there exists Z, €g,, Z, {gkﬂ such that Z, is an eigenvector for adgb. (Re-
call also that dimg, = dimg,,, + 1 and [g, g,] C gy, for all k.)

Let L, denote the subf1eld of K annihilated by g,. Then L =1L, C
L,c..-C Ls+1 = K. Let S be the maximal subalgebra of K on wh1ch the
elements of g are locally nilpotent derivations. Set S =L, N S and §,

L, NS. Certainly }‘k contains the subalgebra of K generated by L and Sk'
In fact we shall see that it coincides with it.

We show that for each k either Lyy=Lyor L= L,(a) for some

Sp+1- This will prove the theorem with deg K -—degL <dimg as required.

Verlfy that Z S C S z S C S and Z,L,C L; for all 7, j. We show that
L, is the quotient held of S by mductxon on k. By definition K=L_,, is
the quotient field of S = Ss“. So, given € L, C L,,,, we may write by the
induction hypothesis £=a~lb:a, be Si+1 Suppose that Z, a # 0, then
Z,£ =0 gives £= (Zka)'lzkb. Then by the local nilpotency of Z, on
Sy 4+, we may choose a, b€ §,.

Finally suppose that L # L,. Then there exists de S+, such that

k+1
Zka' # 0 so by the local nilpotency of Z, on S, ,,, there exists a"e Sis1
such that Z,a ““be AYRNZ # 0. Now suppose that Z.b # 0, for some i. Then
Z(Z,a") =12y, Z)a"+ Z(Z,a") = Zb# 0, since [Z), Z) € gp4, and

a"e S, +1- Hence by the local nilpotency of Z, on S, we may choose a"e
Sy 41 such that Zya" = b € L: b £ 0. Then there exists a € §k+1 such that

Zya=1. Let a IR +OL0 a,€L,,a, # 0, be the minimal polynomial

"

of @ in L,. The relation Zka = za"1 contradlcts its minimality, so a is
transcendental over L,. Further for any c € 3‘ p+1» We have Z c=de 3’

d # 0, for some nonnegative integer n. Then e=c - (n)~'a "d sansfles
ZZ'le =fe€ ?k‘ Hence by induction $, ,; = S,[al. Then L, = L;(a), which

proves the theorem.

Preserve the notation used in the proof of Theorem 2.3. For each k=
1,2, -+, s+ 1; Ae spec (5) (resp. A€ spec(T)) set S,(A) = SN NS,
(resp. ?k(h) =T N glk). Recall that by construction [Y, Z].] =u;Z

By € C. Let p; denote the r-tuple with entries p;..




PROOF OF THE GELFAND-KIRILLOV CONJECTURE 5

Lemma 2.4, Forall j, k=1,2,-++,s+1,
(1) Z]. Sk(/\) C Sk(A+ p].): for all X € spec(S),
(2) ng'k()t) C g'k()& +u)): for all Aespec(T),
(3) S, = @Xespcc(S)Sk()‘) (direct sum).

Proof. (1) and (2) are clear. (3) holds for k= s+ 1 since S¢41=S
and S is a direct sum of its eigensubspaces. Assume (3) holds for all £ > ;.
To show it holds for k= j recall that S]. CSin and apply (1).

Corollary 2.5. Suppose S, # S, for some ke(1,2,---,s). Then there
exists )‘k € spec(T) such that §k+1 = ?k[ak] with ay € 'fkﬂ()\k).

Proof. Apply Lemma 2.4 to the latter half of the proof of Theorem 2.3,
noting that we may choose a' ¢ Si+1(A) for some A€ spec (S).

The conclusion of Theorem 2.3 shows that we may write K =
Koy ygn o, y)- Assume t<dimg; let {T }:i=1,2,---,¢ bea sub-
basis of a basis for g and denote by B the matrix with entries Tl.y].. Re-
call that g =g, ® g, and let {Y;}' {Z].} be the bases for g defined in the
proof of Theorem 2.3. Assume {Y, }:a=1,2,---,y, {Z'ui: p=1,2,---,p

to be subbases on which B is nondegenerate. Further assume that
(2.3) Z, € {Zl-t} given Lk.+1 # L,.

Following Theorem 2.3 introduce subsets {y; i, {y;’} of ¥; such that
L'= Koyis ¥y e y,;'), K= L('yi', Yot y;'). Note that y+ p=y '+
p =t By (2.3) p <p. Since y €L, B#a = 0 for the given ranges of
¢, @. Then detB # 0, implies p'> p. Hence p' = p and y' = y. Then the
B;w are the entries of a square matrix which is upper triangular, has ones
on the diagonal, and its remaining entries lie in % which was shown to be
identical with L[y], y5, -+, y;]. Since the y, € L, it follows that detB € L.
As was shown, the y, may be chosen as eigenfunctions of the elements of
8- Then B ;=A,;¥,;: Aq; € C. Let B~! denote the inverse of B. Then
B;lﬁ € L, forall a, 8, and B-! defines a matrix which is upper triangular,
has ones on the diagonal, and its remaining entries lie in 3. Finally B;,le
are polynomials in the y: over.L with no constant terms.

Given a € K, then

(2.4) Za=beS forall Zeg, implies that a€S.

Indeed by definition of 3, there exists for each Z € g, a positive integer
m such that Z™b = 0. But then Z™*!a = 0 which implies that @€ 3.
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We remark that the above conclusions hold should C be replaced by an
arbitrary algebraically closed commutative field of characteristic zero.

3. Proof of conjecture.

Theorem 3.1 [4, Proposition II1.8, Theorem II1.9). Given g solvable,
then

(1) there exist pairwise commutative elements Aa'e Ug:a=1,2,---,5,
algebraically independent over C. Set A= C[Al, AZ‘ <+, AJ] and let K de-
note its quotient field. The [g, K] C K, and K is a maximal commutative sub-
field of Dg;

(2) there exist T,€g:i=1,2, -+, t, algebraically independent over K
such that (1, T|, T, -++, T,) is a basis for the extension g of g by K.
Further Dg = Dg and [T, A ]l = A, € K where the matrix A with entries
A, is of rank t in K.

a

3) dimcC(Dg) < s—t and C(Dg) C K, where C denotes centre.

Set K= C(Dg). Set m=dimg, n= % dim Q, where  is an orbit of

maximal dimension in the dual g* of g[1].

Theorem 3.2. Suppose g is solvable and algebraic. Define m, n as
above. Then Dg is isomorphic to D, with k=m— 2n.

Proof. By [1] (cf. [9, Lemma 7]), Dim C(Dg) = m - 2n = k. Since g is
algebraic, (2.1) applies to the algebra A defined in (1) above. Hence
2s < 2m-2m=m+ k. Yet m=dimg= s+ t, where t is defined in (2). Then
by (3), 2s> m+ k. Hence k= s—t and n=t. Further t = degK - degK,,.

Since A ¢ Ug, the space V generated by adg on A is finite dimension-
al. Further the algebra S generated by V, being a subalgebra of Ug, has no
zero divisors. By (1) its quotient field is precisely K which is commutative.
Since g is solvable algebraic, it follows by Lemma 2.1 that adg considered
as a subalgebra of gl(V) is solvable and almost algebraic. Recalling (1), (3)
above, Theorem 2.3 applies to show that Kolyy yg oo ¥y Further by

[10], there exist z,e C(Dg), such that Ky = Clz}, z,, -+, 2;). Set
B - Yo a=1,2,+++,1,
a za—t: a=t+1,...,s.

Define Bi'a = 2,6 AiB(BBa/aAB). Clearly rank B’ = rank A = ¢ in K by

(2) above. Further define a ¢ x t matrix B with entries

B'j=[Ti’ y],]:B:,j; iy j=1,2,%00,t

1
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Then detB # 0, since Bl.'a =0:a>t.
Set x; = EiB]'.'ilTi. By construction

(3.2) [xl., y].] = 51.].1,
whereas
(3.3) by, yl=0

since y € K. Note that (3.2) implies (ad x)u = 3d/dy/u) for all u€ K. Then
by (3.2) and (3.3): [[x, xj], yi) = 0 forall i, j, k. Hence

(304) [[xi’ xj]9 Aa] = 0

forall 4, 7=1,2,---,¢ a=1,2,---,s. Yet x,€g so by the maximality
of K: [x, x].] € K. Set [x, x].] = /1.].. By antisymmetry, (3.2) and the Jacobi
identity applied to [[xl., x].], xk] we obtain

f..+/..=0

(35 Ol + s+ 91 =0,

where d, denotes differentiation in y,. The theorem is proved if we can
show that there exist g; € K, such that

(3.6) fj=9:8; =98,
for all i, j. For then replacing x; by x;- g;, we obtain
3.7 [xz., x].] =0

Then by (2) above the x, Yy Zj i=1,2,--,t j=1,2,---,k, gen-
erate Dg. Recalling that z € K, it follows by (3.2), (3.3) and (3.7) that
Dg is isomorphic to D, , as required.

Let A be the rth generator of K constructed in the recurrence pro-
cedure of [4, Lemma IIL.4]. Set K, =C, K,,;=K,(A,). Let {Xi} be some
basis for g. The cobase {T,} is obtained as a subbasis of {X } by elimi-
nating at each step one X for which a, # 0 in the relation: A, = 2 a; X :
OL]€ K,. With g= g, @ g,, choose the bases {Y i {Z } for g1 8 descnbed
in §2 Should a, ;é 0, for some Y, eliminate the Y. Otherwise eliminate
the Z, belongmg to the smallest j for which a.# 0. Let {y, 1 {Z#} denote

the resulting cobase. By construction if Z, is not in the cobase

(3.8) Zy= X 4.2, By Tr By € K

u>k




8 A. JOSEPH

Suppose L, ., # L,. By Theorem 2.3, L, = L,(a,) where [Z, 4,]=1
and @, € L, ,,. This contradicts (3.8). Hence (2.3) holds for {Z/_L}. Further
the conclusion p' = p (established in the discussion following (2.3)) implies
that

(3.9) ZyelZ,} ifandonly if L,  #L,.

Recalling the choice of the cobase substitution from (3.8) gives

[Yay Yﬁ]=07 [Ya9 Z#]=Ca#ZM:~ C GC,

ap
A
z,z)= Zy Z+L, T

Y})_\Ly’
We show that l" v € 3. By (2.4) and the nilpotency of g, it suffices to
show that y" es. Now by (3.9), recalling the definition of the a,, we have

A-1

Yy =UZ,p Z,)s 4] - 2-:1 G EENT

Then, using (2.4), induction on A proves the assertion.
Construct the y; and the x; as above. Then the only contribution to

. 1 .
[xz., x].] comes from F;w. Recalling ($2) that Bi,u, €S we obtain
(3.10) ERPAE ):B"B"I‘

Set x = E B"'IT x —-EIB;ZIT Since by (3.10), the / are poly-
nomials in the Y ” over L we may integrate (3.5) in the y to obtam func-

tions g, €S such that the X, = x, - g,, satisfy
(3.11) [551., E#] =0

for all i, y This integration is performed as follows. Assume p > 1 and
identify y with y,. Set g, =0 and g;= Yt /z dy,, for 1<i<t. By (3.10)
f,i is polynomxal in y, and so g€ 3 for all i. Set /” = [~ (0. 8~ a. g)
Then /l].e ¥ and satisfies (3.5). / = 0 by construction, so by (3.5) /

and at/i'j = 0 for all 7, j. Then (3.11) obtains by successive integration in

each y}: . Note further that g, as polynomials in the y;; over L are chosen
to have no constant terms.

We show that the [%, as polynomials in the y';' over L, have no

%),

constant terms. This property was demonstrated in §2 for the BZ 1 It also

holds for the [Y,),, g,] by choice of the g, and because the y'u are eigen-
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vectors of adY, where (adY,) L CL forall y. It is then sufficient to
observe that

(%,, %3] = 3 B'Ba, Ty + xp g,) - [x, 850
752
where

[XB’ gal= ; BB'; [Y'y’ gl + X BB_ALI[Z#’ gal:
m

.Yet [J?Iu, (%, FC'B]] =0 by (3.11) and the Jacobi identity, so [X, ’?ﬁ] €L
by (3.2). Hence [%, % g = 0. Combined with (3.11) it follows that the re-
quired functions g; exist and the theorem is proved.

Remarks. The theorem evidently fails should & — deg K be an odd in-
teger. Yet given deg K, = k, it is sufficient that g be almost algebraic. In
this connection see [2, $8] for examples. If g is not almost algebraic the
integration of (3.5) may fail in K. For example, let e denote the usual
canonical basis in Hom (C>, C°). Set dyp=ej,— €55 A, =€y3 = €40 V) =
€15 ¥y=€, F=¢€p3. Let hC gl(C%) be the Lie algebra spanned by these
elements. In » we have the bracket relations [al, az] =z, [a,, yl] =y
[az, y2] =y, and all other brackets vanish. » is evidently solvable, yet not
almost algebraic. Set K = Cly,, y,, z). Then K, = C(2), x, = y;l a,,
x,= y{laz. Equations (3.1) and (3.2) hold; but f,, = z/yly2 and (3.5)
does not admit integration in K.

Finally given g nilpotent, it is easy to see that the common divisor of
X Vi Zj lies in C(Ug), so we have incidentally proved [2, Lemma 9].
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