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SEQUENTIAL AND CONDITIONAL COMPACTNESS

IN THE DUAL OF A BARRELLED SPACE

EDWARD G. OSTLING

ABSTRACT.  Let   £ be a barrelled locally convex space and suppose

Ta  is a topology on the dual   E    of  E which is admissible for the dual-

ity  (E, E ).  It is shown that each   Ta   sequentially compact subset of E

is Ta   conditionally compact.

Let  X denote a Banach space and   AX , X) the Mackey topology for the

dual  X'  of X.   J. Howard [l] used a result of Grothendieck to show that each

AX', X)  sequentially compact subset of X    is   AX , X)  conditionally com-

pact.  We give a direct proof of a more general result.

Let  E  denote a locally convex topological vector space.   A topology

Ta   on the dual   E    of  E  is admissible for the duality  (E, E )  if it is the

topology of uniform convergence on a family  (l of subsets of E  satisfying

conditions   Bl—B3 on p. 46 of [A].   Also, AE', E)  denotes the weak star to-

pology on  E , so that each admissible topology on  E    is finer than AE', E).

Theorem.   Let  E  be a barrelled space and suppose   Ta   is a topology on

E    admissible for (E,  E ).   Then each  Ta   sequentially compact subset of

E'  is  T„   conditionally compact.

Proof.   By [3, 21.4 (4)], (E', AE , E)) is a boundedly complete space.

It follows from [3, 18.4,(4b)] that  (E',  Ta ) is boundedly complete.   Let  A'

be a  T„   sequentially compact subset of  E .   Then  A    is   T„   countably

compact, hence   T~   totally bounded [3, 5.6 (3)]-   It follows from [4, Lemma 3,

p. 49] that the   Ta   closure A    of A    is   Ta   totally bounded, hence   T„

bounded and closed.   Therefore, A    is   Ta   complete, hence   T„   compact.

Remarks.   (1) Since a Banach space  X is barrelled and   AX1, X) is ad-

missible for iX, X ), the result of [l] stated above is a special case of the

Theorem.
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(2) As was shown in [l], there are barrelled spaces in which the con-

verse of our result is false.

(3) By [2, Problem 19C], a bornological space  E  in which the closed

convex hull of a compact set is compact has the property that  (E ,  Ta) is

complete for certain admissible topologies   Ta (including   AE , E)).  The

proof of the Theorem thus holds for such topologies also.
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