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SEQUENTIAL AND CONDITIONAL COMPACTNESS
IN THE DUAL OF A BARRELLED SPACE

EDWARD G. OSTLING

ABSTRACT. Let E be a barrelled locally convex space and suppose
T(T is a topology on the dual E' of E which is admissible for the dual-
ity (E, E'). It is shown that each T@ sequentially compact subset of E’

is TG conditionally compact.

Let X denote a Banach space and X', X) the Mackey topology for the
dual X' of X. J. Howard [1] used a result of Grothendieck to show that each
AX', X) sequentially compact subset of X' is AX’, X) conditionally com-
pact. We give a direct proof of a more general result.

Let E denote a locally convex topological vector space. A topology
T(i on the dual E' of E is admissible for the duality (E, E'y if it is the
topology of uniform convergence on a family @ of subsets of E satisfying
conditions B1-B3 on p. 46 of [4]. Also, o(E’, E) denotes the weak star to-

pology on E’, so that each admissible topology on E' is finer than o(E’, E).

Theorem. Let E be a barrelled space and suppose Tq is atopology on
E' admissible for (E, E'). Then each TG sequentially compact subset of

E' is T@
Proof. By [3, 21.4 (4)], (E', o(E’, E)) is a boundedly complete space.
It follows from [3, 18.4,(4b)] that (E’, T@ ) is boundedly complete. Let A’
be a Tgq sequentially compact subset of E'. Then A’ is T@ countably
compact, hence T(i totally bounded [3, 5.6 (3)]. It follows from [4,Lemma 3,
p. 49] that the Tq closure A’ of A' is Tg totally bounded, hence Tq
bounded and closed. Therefore, A’ is TG complete, hence T@ compact.
Remarks. (1) Since a Banach space X is barrelled and A X', X) is ad-
missible for (X, X'), the result of [1] stated above is a special case of the

conditionally compact.

Theorem.
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(2) As was shown in [1], there are barrelled spaces in which the con-
verse of our result is false.

(3) By [2, Problem 19C], a bornological space E in which the closed
convex hull of a compact set is compact has the property that (E’, Tg) is
complete for certain admissible topologies Ty (including AE’, E)). The

proof of the Theorem thus holds for such topologies also.
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